skip to main content


Title: DEK domain‐containing proteins control flowering time in Arabidopsis
Summary

Evolutionarily conserved DEK domain‐containing proteins have been implicated in multiple chromatin‐related processes, mRNA splicing and transcriptional regulation in eukaryotes.

Here, we show that two DEK proteins, DEK3 and DEK4, control the floral transition inArabidopsis. DEK3 and DEK4 directly associate with chromatin of related flowering repressors,FLOWERING LOCUS C(FLC), and its two homologs,MADS AFFECTING FLOWERING4(MAF4) andMAF5, to promote their expression.

The binding of DEK3 and DEK4 to a histone octamerin vivoaffects histone modifications atFLC,MAF4andMAF5loci. In addition, DEK3 and DEK4 interact with RNA polymerase II and promote the association of RNA polymerase II withFLC,MAF4andMAF5chromatin to promote their expression.

Our results show that DEK3 and DEK4 directly interact with chromatin to facilitate the transcription of key flowering repressors and thus prevent precocious flowering inArabidopsis.

 
more » « less
Award ID(s):
1656764
NSF-PAR ID:
10450167
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
231
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
p. 182-192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The juvenile‐to‐adult vegetative phase change in flowering plants is mediated by a decrease in miR156 levels. Downregulation ofMIR156A/MIR156C, the two major sources of miR156, is accompanied by a decrease in acetylation of histone 3 lysine 27 (H3K27ac) and an increase in trimethylation of H3K27 (H3K27me3) atMIR156A/MIR156CinArabidopsis.

    Here, we show that histone deacetylase 9 (HDA9) is recruited toMIR156A/MIR156Cduring the juvenile phase and associates with the CHD3 chromatin remodeler PICKLE (PKL) to erase H3K27ac atMIR156A/MIR156C.

    H2Aub and H3K27me3 become enriched atMIR156A/MIR156C, and the recruitment of Polycomb Repressive Complex 2 (PRC2) toMIR156A/MIR156Cis partially dependent on the activities of PKL and HDA9.

    Our results suggest that PKL associates with histone deacetylases to erase H3K27ac and promote PRC1 and PRC2 activities to mediate vegetative phase change and maintain plants in the adult phase after the phase transition.

     
    more » « less
  2. Summary

    The expression of an intracellular immune receptor geneSNC1(SUPPRESSOR OF npr1,CONSTITUTIVE 1) is regulated by multiple chromatin‐associated proteins for tuning immunity and growth in Arabidopsis. Whether and how these regulators coordinate to regulateSNC1expression under varying environmental conditions is not clear.

    Here, we identified two activation and one repression regulatory modules based on genetic and molecular characterizations of five chromatin‐associated regulators ofSNC1.

    Modifier ofsnc1(MOS1) constitutes the first module and is required for the interdependent functions of ARABIDOPSIS TRITHORAX‐RELATED 7 (ATXR7) and HISTONE MONOUBIQUITINATION 1 (HUB1) to deposit H3K4me3 and H2Bub1 at theSNC1locus. CHROMATIN REMODELING 5 (CHR5) constitutes a second module and works independently of ATXR7 and HUB1 in the MOS1 module. HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15 (HOS15) constitutes a third module responsible for removing H3K9ac to repressSNC1expression under nonpathogenic conditions. The upregulation ofSNC1resulting from removing the HOS15 repression module is partially dependent on the function of the CHR5 module and the MOS1 module.

    Together, this study reveals both the distinct and interdependent regulatory mechanisms at the chromatin level forSNC1expression regulation and highlights the intricacy of regulatory mechanisms of NLR expression under different environment.

     
    more » « less
  3. SUMMARY

    Flowering of the reference legumeMedicago truncatulais promoted by winter cold (vernalization) followed by long‐day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacksFLCandCO, key regulators of Arabidopsis VLD flowering.Most plants have twoINHIBITOR OF GROWTH(ING) genes (ING1andING2), encoding proteins with an ING domain with two anti‐parallel alpha‐helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described.In Medicago,Mting1gene‐edited mutants developed and flowered normally, but anMting2‐1 Tnt1insertion mutant and gene‐editedMting2mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels.Mting2mutants had reduced expression of activators of flowering, including theFT‐like geneMtFTa1, and increased expression of the candidate repressorMtTFL1c, consistent with the delayed flowering of the mutant.MtING2overexpression complementedMting2‐1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weaklyin vitro, but analysis of gene‐edited mutants indicated that it was dispensable to MtING2 function in wild‐type plants. RNA sequencing experiments indicated that >7000 genes are mis‐expressed in theMting2‐1mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP‐seq analysis identified >5000 novel H3K4me3 locations in the genome ofMting2‐1mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plantING2gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.

     
    more » « less
  4. Summary

    Polycomb dictates developmental programs in higher eukaryotes, including flowering plants. A phytohormone, abscisic acid (ABA), plays a pivotal role in seed and seedling development and mediates responses to multiple environmental stresses, such as salinity and drought.

    In this study, we show that ABA affects the Polycomb Repressive Complex 2 (PRC2)‐mediated Histone H3 Lys 27 trimethylation (H3K27me3) through VIN3‐LIKE1/VERNALIZATION 5 (VIL1/VRN5) to fine‐tune the timely repression ofABSCISIC ACID INSENSITIVE 3(ABI3) andABSCISIC ACID INSENSITIVE 4(ABI4) inArabidopsis thaliana.

    vil1mutants exhibit hypersensitivity to ABA during early seed germination and show enhanced drought tolerance.

    Our study revealed that the ABA signaling pathway utilizes a facultative component of the chromatin remodeling complex to demarcate the level of expression of ABA‐responsive genes.

     
    more » « less
  5. Summary

    Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. InArabidopsis thaliana, vernalization leads to the stable repression of the floral repressorFLOWERING LOCUS Cvia chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter,VERNALIZATION1(VRN1). From a screen for mutants with a reduced vernalization requirement in the model grassBrachypodium distachyon, we identified two recessive alleles ofENHANCER OF ZESTELIKE 1(EZL1).EZL1is orthologous toA. thalianaCURLY LEAF 1, a gene that encodes the catalytic subunit ofPRC2.B. distachyon ezl1mutants flower rapidly without vernalization in long‐day (LD) photoperiods; thus,EZL1is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies inezl1revealed mis‐regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss ofEZL1results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution toPRC2 activity inB. distachyon. Furthermore, inezl1mutants, the flowering genesVRN1andAGAMOUS(AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNAknock‐down of eitherVRN1orAGinezl1‐1mutants partially restores wild‐type flowering behavior in non‐vernalized plants, suggesting that ectopic expression inezl1mutants may contribute to the rapid‐flowering phenotype.

     
    more » « less