skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The three Ts of virulence evolution during zoonotic emergence
There is increasing interest in the role that evolution may play in current and future pandemics, but there is often also considerable confusion about the actual evolutionary predictions. This may be, in part, due to a historical separation of evolutionary and medical fields, but there is a large, somewhat nuanced body of evidence-supported theory on the evolution of infectious disease. In this review, we synthesize this evolutionary theory in order to provide a framework for clearer understanding of the key principles. Specifically, we discuss the selection acting on zoonotic pathogens' transmission rates and virulence at spillover and during emergence. We explain how the direction and strength of selection during epidemics of emerging zoonotic disease can be understood by a three Ts framework: trade-offs, transmission, and time scales. Virulence and transmission rate may trade-off, but transmission rate is likely to be favoured by selection early in emergence, particularly if maladapted zoonotic pathogens have ‘no-cost’ transmission rate improving mutations available to them. Additionally, the optimal virulence and transmission rates can shift with the time scale of the epidemic. Predicting pathogen evolution, therefore, depends on understanding both the trade-offs of transmission-improving mutations and the time scales of selection.  more » « less
Award ID(s):
2011109
PAR ID:
10293839
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1956
ISSN:
0962-8452
Page Range / eLocation ID:
20210900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Disease outbreaks are a consequence of interactions among the three components of a host–parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host–parasite coevolution. Here, we review research on how environmental context alters virulence–transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related ‘approaches’ that have dominated the study of the evolution of virulence and transmission for different host–parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence–transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence–transmission relationships across a diversity of host–parasite systems that have eluded experimental study of parasite life history. 
    more » « less
  2. To understand infectious disease dynamics, we need to understand the inextricably intertwined nature of the ecology and evolution of pathogens and hosts. Epidemiological dynamics of many infectious diseases have highlighted the importance of considering the demographics of the societies in which they spread, particularly with respect to age structure. In addition, the waves of the recent COVID-19 pandemic driven by variant replacements at an unprecedented speed show that it is vital to consider the evolutionary aspects. The classic trade-off theory of virulence addresses aspects of pathogen evolution, but here we explore in more detail the possibility of society-specific evolutionarily stable strategies (ESS) during an unfolding pandemic. Theory posits the existence under some conditions of an ESS representing the evolutionary endpoint of change. By using a demographically realistic model incorporating infection rates that vary with age, we outline which evolutionary scenarios are plausible. Focusing on the rate of infection and duration of infectivity, we ask whether an ESS exists, what characterizes it, and as a result which long-term public-health consequences may be expected. We demonstrate that the ESS of an evolving pathogen depends upon the background age-dependent frailty and mortality rates. Our findings shed important light on the plausible long-term trajectories of highly evolvable novel pathogens. 
    more » « less
  3. Lloyd-Smith, James (Ed.)
    The management of future pandemic risk requires a better understanding of the mechanisms that determine the virulence of emerging zoonotic viruses. Meta-analyses suggest that the virulence of emerging zoonoses is correlated with but not completely predictable from reservoir host phylogeny, indicating that specific characteristics of reservoir host immunology and life history may drive the evolution of viral traits responsible for cross-species virulence. In particular, bats host viruses that cause higher case fatality rates upon spillover to humans than those derived from any other mammal, a phenomenon that cannot be explained by phylogenetic distance alone. In order to disentangle the fundamental drivers of these patterns, we develop a nested modeling framework that highlights mechanisms that underpin the evolution of viral traits in reservoir hosts that cause virulence following cross-species emergence. We apply this framework to generate virulence predictions for viral zoonoses derived from diverse mammalian reservoirs, recapturing trends in virus-induced human mortality rates reported in the literature. Notably, our work offers a mechanistic hypothesis to explain the extreme virulence of bat-borne zoonoses and, more generally, demonstrates how key differences in reservoir host longevity, viral tolerance, and constitutive immunity impact the evolution of viral traits that cause virulence following spillover to humans. Our theoretical framework offers a series of testable questions and predictions designed to stimulate future work comparing cross-species virulence evolution in zoonotic viruses derived from diverse mammalian hosts. 
    more » « less
  4. Abstract Changes to migration routes and phenology create novel contact patterns among hosts and pathogens. These novel contact patterns can lead to pathogens spilling over between resident and migrant populations. Predicting the consequences of such pathogen spillover events requires understanding how pathogen evolution depends on host movement behaviour. Following spillover, pathogens may evolve changes in their transmission rate and virulence phenotypes because different strategies are favoured by resident and migrant host populations. There is conflict in current theoretical predictions about what those differences might be. Some theory predicts lower pathogen virulence and transmission rates in migrant populations because migrants have lower tolerance to infection. Other theoretical work predicts higher pathogen virulence and transmission rates in migrants because migrants have more contacts with susceptible hosts.We aim to understand how differences in tolerance to infection and host pace of life act together to determine the direction of pathogen evolution following pathogen spillover from a resident to a migrant population.We constructed a spatially implicit model in which we investigate how pathogen strategy changes following the addition of a migrant population. We investigate how differences in tolerance to infection and pace of life between residents and migrants determine the effect of spillover on pathogen evolution and host population size.When the paces of life of the migrant and resident hosts are equal, larger costs of infection in the migrants lead to lower pathogen transmission rate and virulence following spillover. When the tolerance to infection in migrant and resident populations is equal, faster migrant paces of life lead to increased transmission rate and virulence following spillover. However, the opposite can also occur: when the migrant population has lower tolerance to infection, faster migrant paces of life can lead to decreases in transmission rate and virulence.Predicting the outcomes of pathogen spillover requires accounting for both differences in tolerance to infection and pace of life between populations. It is also important to consider how movement patterns of populations affect host contact opportunities for pathogens. These results have implications for wildlife conservation, agriculture and human health. 
    more » « less
  5. Pairwise host–parasite relationships are typically embedded in broader networks of ecological interactions, which have the potential to shape parasite evolutionary trajectories. Understanding this ‘community context’ of pathogen evolution is vital for wildlife, agricultural and human systems alike, as pathogens typically infect more than one host—and these hosts may have independent ecological relationships. Here, we introduce an eco-evolutionary model examining ecological feedback across a range of host–host interactions. Specifically, we analyse a model of the evolution of virulence of a parasite infecting two hosts exhibiting competitive, mutualistic or exploitative relationships. We first find that parasite specialism is necessary for inter-host interactions to impact parasite evolution. Furthermore, we find generally that increasing competition between hosts leads to higher shared parasite virulence while increasing mutualism leads to lower virulence. In exploitative host–host interactions, the particular form of parasite specialization is critical—for instance, specialization in terms of onward transmission, host tolerance or intra-host pathogen growth rate lead to distinct evolutionary outcomes under the same host–host interactions. Our work provides testable hypotheses for multi-host disease systems, predicts how changing interaction networks may impact virulence evolution and broadly demonstrates the importance of looking beyond pairwise relationships to understand evolution in realistic community contexts. 
    more » « less