skip to main content


Title: Understanding the impact of GitHub suggested changes on recommendations between developers
Recommendations between colleagues are effective for encouraging developers to adopt better practices. Research shows these peer interactions are useful for improving developer behaviors, or the adoption of activities to help software engineers complete programming tasks. However, in-person recommendations between developers in the workplace are declining. One form of online recommendations between developers are pull requests, which allow users to propose code changes and provide feedback on contributions. GitHub, a popular code hosting platform, recently introduced the suggested changes feature, which allows users to recommend improvements for pull requests. To better understand this feature and its impact on recommendations between developers, we report an empirical study of this system, measuring usage, effectiveness, and perception. Our results show that suggested changes support code review activities and significantly impact the timing and communication between developers on pull requests. This work provides insight into the suggested changes feature and implications for improving future systems for automated developer recommendations, such as providing situated, concise, and actionable feedback.  more » « less
Award ID(s):
1714538
NSF-PAR ID:
10294089
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ESEC/FSE 2020: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
Page Range / eLocation ID:
1065 to 1076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evidence shows that developer reputation is extremely important when accepting pull requests or resolving reported issues. It is particularly salient in Free/Libre Open Source Software since the developers are distributed around the world, do not work for the same organization and, in most cases, never meet face to face. The existing solutions to expose developer reputation tend to be forge specific (GitHub), focus on activity instead of impact, do not leverage social or technical networks, and do not correct often misspelled developer identities. We aim to remedy this by amalgamating data from all public Git repositories, measuring the impact of developer work, expose developer's collaborators, and correct notoriously problematic developer identity data. We leverage World of Code (WoC), a collection of an almost complete (and continuously updated) set of Git repositories by first allowing developers to select which of the 34 million(M) Git commit author IDs belong to them and then generating their profiles by treating the selected collection of IDs as that single developer. As a side-effect, these selections serve as a training set for a supervised learning algorithm that merges multiple identity strings belonging to a single individual. As we evaluate the tool and the proposed impact measure, we expect to build on these findings to develop reputation badges that could be associated with pull requests and commits so developers could easier trust and prioritize them. 
    more » « less
  2. Open source software is commonly portrayed as a meritocracy, where decisions are based solely on their technical merit. However, literature on open source suggests a complex social structure underlying the meritocracy. Social work environments such as GitHub make the relationships between users and between users and work artifacts transparent. This transparency enables developers to better use information such as technical value and social connections when making work decisions. We present a study on open source software contribution in GitHub that focuses on the task of evaluating pull requests, which are one of the primary methods for contributing code in GitHub. We analyzed the association of various technical and social measures with the likelihood of contribution acceptance. We found that project managers made use of information signaling both good technical contribution practices for a pull request and the strength of the social connection between the submitter and project manager when evaluating pull requests. Pull requests with many comments were much less likely to be accepted, moderated by the submitter's prior interaction in the project. Well-established projects were more conservative in accepting pull requests. These findings provide evidence that developers use both technical and social information when evaluating potential contributions to open source software projects 
    more » « less
  3. Applications often have fast-paced release schedules, but adoption of software dependency updates can lag by years, leaving applications susceptible to security risks and unexpected breakage. To address this problem, we present UPGRADVISOR, a system that reduces developer effort in evaluating dependency updates and can, in many cases, automatically determine which updates are backward-compatible versus API-breaking. UPGRADVISOR introduces a novel co-designed static analysis and dynamic tracing mechanism to gauge the scope and effect of dependency updates on an application. Static analysis prunes changes irrelevant to an application and clusters relevant ones into targets. Dynamic tracing needs to focus only on whether targets affect an application, making it fast and accurate. UPGRADVISOR handles dynamic interpreted languages and introduces call graph over-approximation to account for their lack of type information and selective hardware tracing to capture program execution while ignoring interpreter machinery. We have implemented UPGRADVISOR for Python and evaluated it on 172 dependency updates previously blocked from being adopted in widely-used open-source software, including Django, aws-cli, tfx, and Celery. UPGRADVISOR automatically determined that 56% of dependencies were safe to update and reduced by more than an order of magnitude the number of code changes that needed to be considered by dynamic tracing. Evaluating UPGRADVISOR’s tracer in a production-like environment incurred only 3% overhead on average, making it fast enough to deploy in practice. We submitted safe updates that were previously blocked as pull requests for nine projects, and their developers have already merged most of them. 
    more » « less
  4. Abstract

    Software bots have been facilitating several development activities in Open Source Software (OSS) projects, including code review. However, these bots may bring unexpected impacts to group dynamics, as frequently occurs with new technology adoption. Understanding and anticipating such effects is important for planning and management. To analyze these effects, we investigate how several activity indicators change after the adoption of a code review bot. We employed a regression discontinuity design on 1,194 software projects from GitHub. We also interviewed 12 practitioners, including open-source maintainers and contributors. Our results indicate that the adoption of code review bots increases the number of monthly merged pull requests, decreases monthly non-merged pull requests, and decreases communication among developers. From the developers’ perspective, these effects are explained by the transparency and confidence the bot comments introduce, in addition to the changes in the discussion focused on pull requests. Practitioners and maintainers may leverage our results to understand, or even predict, bot effects on their projects.

     
    more » « less
  5. Modern software engineering practices rely on program comprehension as the most basic underlying component for improving developer productivity and software reliability. Software developers are often tasked to work with unfamiliar code in order to remove security vulnerabilities, port and refactor legacy code, and enhance software with new features desired by users. Automatic identification of behavioral clones, or behaviorally-similar code, is one program comprehension technique that can provide developers with assistance. The idea is to identify other code that "does the same thing" and that may be more intuitive; better documented; or familiar to the developer, to help them understand the code at hand. Unlike the detection of syntactic or structural code clones, behavioral clone detection requires executing workloads or test cases to find code that executes similarly on the same inputs. However, a key problem in behavioral clone detection that has not received adequate attention is the "preponderance of the evidence" problem, which advocates for more convincing evidence from nontrivial test case executions to gain confidence in the behavioral similarities. In other words, similar outputs for some inputs matter more than for others. We present a novel system, SABER, to address the "preponderance of the evidence" problem, for which we adapt the legal metaphor of "more likely to be true than not true" burden of proof. We develop a novel test case generation methodology with three primary dynamic analysis techniques for identifying important behavioral clones. Further, we investigate filtering and weighting schemes to guide developers toward the most convincing behavioral similarities germane to specific software engineering tasks, such as code review, debugging, and introducing new features. 
    more » « less