Collaborative localization is an essential capability for a team of robots such as connected vehicles to collaboratively estimate object locations from multiple perspectives with reliant cooperation. To enable collaborative localization, four key challenges must be addressed, including modeling complex relationships between observed objects, fusing observations from an arbitrary number of collaborating robots, quantifying localization uncertainty, and addressing latency of robot communications. In this paper, we introduce a novel approach that integrates uncertainty-aware spatiotemporal graph learning and model-based state estimation for a team of robots to collaboratively localize objects. Specifically, we introduce a new uncertainty-aware graph learning model that learns spatiotemporal graphs to represent historical motions of the objects observed by each robot over time and provides uncertainties in object localization. Moreover, we propose a novel method for integrated learning and model-based state estimation, which fuses asynchronous observations obtained from an arbitrary number of robots for collaborative localization. We evaluate our approach in two collaborative object localization scenarios in simulations and on real robots. Experimental results show that our approach outperforms previous methods and achieves state-of-the-art performance on asynchronous collaborative localization.
more »
« less
Asynchronous Adaptive Sampling and Reduced-Order Modeling of Dynamic Processes by Robot Teams via Intermittently Connected Networks
This work presents an asynchronous multi-robot adaptive sampling strategy through the synthesis of an intermittently connected mobile robot communication network. The objective is to enable a team of robots to adaptively sample and model a nonlinear dynamic spatiotemporal process. By employing an intermittently connected communication network, the team is not required to maintain an all-time connected network enabling them to cover larger areas, especially when the team size is small. The approach first determines the next meeting locations for data exchange and as the robots move towards these predetermined locations, they take measurements along the way. The data is then shared with other team members at the designated meeting locations and a reducedorder-model (ROM) of the process is obtained in a distributed fashion. The ROM is used to estimate field values in areas without sensor measurements, which informs the path planning algorithm when determining a new meeting location for the team. The main contribution of this work is an intermittent communication framework for asynchronous adaptive sampling of dynamic spatiotemporal processes. We demonstrate the framework in simulation and compare different reduced-order models under full, all-time and intermittent connectivity.
more »
« less
- Award ID(s):
- 1812319
- PAR ID:
- 10294295
- Date Published:
- Journal Name:
- 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- Page Range / eLocation ID:
- 4798 to 4805
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present an incremental scalable motion planning algorithm for finding maximally informative trajectories for decentralized mobile robots. These robots are deployed to observe an unknown spatial field, where the informativeness of observations is specified as a density function. Existing works that are typically restricted to discrete domains and synchronous planning often scale poorly depending on the size of the problem. Our goal is to design a distributed control law in continuous domains and an asynchronous communication strategy to guide a team of cooperative robots to visit the most informative locations within a limited mission duration. Our proposed Asynchronous Information Gathering with Bayesian Optimization (AsyncIGBO) algorithm extends ideas from asynchronous Bayesian Optimization (BO) to efficiently sample from a density function. It then combines them with decentralized reactive motion planning techniques to achieve efficient multi-robot information gathering activities. We provide a theoretical justification for our algorithm by deriving an asymptotic no-regret analysis with respect to a known spatial field. Our proposed algorithm is extensively validated through simulation and real-world experiment results with multiple robots.more » « less
-
Long-term deployment of a fleet of mobile robots requires reliable and secure two-way communication channels between individual robots and remote human operators for supervision and tasking. Existing open-source solutions to this problem degrade in performance in challenging real-world situations such as intermittent and low-bandwidth connectivity, do not provide security control options, and can be computationally expensive on hardware-constrained mobile robot platforms. In this paper, we present Robofleet, a lightweight open-source system which provides inter-robot communication, remote monitoring, and remote tasking for a heterogenous fleet of ROS-enabled service-mobile robots that is designed with the practical goals of resilience to network variance and security control in mind.Robofleet supports multi-user, multi-robot communication via a central server. This architecture deduplicates network traffic between robots, significantly reducing overall network load when compared with native ROS communication. This server also functions as a single entrypoint into the system, enabling security control and user authentication. Individual robots run the lightweight Robofleet client, which is responsible for exchanging messages with the Robofleet server. It automatically adapts to adverse network conditions through backpressure monitoring as well as topic-level priority control, ensuring that safety-critical messages are successfully transmitted. Finally, the system includes a web-based visualization tool that can be run on any internet-connected, browser-enabled device to monitor and control the fleet.We compare Robofleet to existing methods of robotic communication, and demonstrate that it provides superior resilience to network variance while maintaining performance that exceeds that of widely-used systems.more » « less
-
Battery-free and intermittently powered devices offer long lifetimes and enable deployment in new applications and environments. Unfortunately, developing sophisticated inference-capable applications is still challenging due to the lack of platform support for more advanced (32-bit) microprocessors and specialized accelerators---which can execute data-intensive machine learning tasks, but add complexity across the stack when dealing with intermittent power. We present Protean to bridge the platform gap for inference-capable battery-free sensors. Designed for runtime scalability, meeting the dynamic range of energy harvesters with matching heterogeneous processing elements like neural network accelerators. We develop a modular "plug-and-play" hardware platform, SuperSensor, with a reconfigurable energy storage circuit that powers a 32-bit ARM-based microcontroller with a convolutional neural network accelerator. An adaptive task-based runtime system, Chameleon, provides intermittency-proof execution of machine learning tasks across heterogeneous processing elements. The runtime automatically scales and dispatches these tasks based on incoming energy, current state, and programmer annotations. A code generator, Metamorph, automates conversion of ML models to intermittent safe execution across heterogeneous compute elements. We evaluate Protean with audio and image workloads and demonstrate up to 666x improvement in inference energy efficiency by enabling usage of modern computational elements within intermittent computing. Further, Protean provides up to 166% higher throughput compared to non-adaptive baselines.more » « less
-
In many scenarios, information must be disseminated over intermittently-connected environments when the network infrastructure becomes unavailable, e.g., during disasters where first responders need to send updates about critical tasks. If such updates pertain to a shared data set, dissemination consistency is important. This can be achieved through causal ordering and consensus. Popular consensus algorithms, e.g., Paxos, are most suited for connected environments. While some work has been done on designing consensus algorithms for intermittently-connected environments, such as the One-Third Rule (OTR) algorithm, there is still need to improve their efficiency and timely completion. We propose CoNICE, a framework to ensure consistent dissemination of updates among users in intermittently-connected, infrastructure-less environments. It achieves efficiency by exploiting hierarchical namespaces for faster convergence, and lower communication overhead. CoNICE provides three levels of consistency to users, namely replication, causality and agreement. It uses epidemic propagation to provide adequate replication ratios, and optimizes and extends Vector Clocks to provide causality. To ensure agreement, CoNICE extends OTR to also support long-term network fragmentation and decision invalidation scenarios; we define local and global consensus pertaining to within and across fragments respectively. We integrate CoNICE's consistency preservation with a naming schema that follows a topic hierarchy-based dissemination framework, to improve functionality and performance. Using the Heard-Of model formalism, we prove CoNICE's consensus to be correct. Our technique extends previously established proof methods for consensus in asynchronous environments. Performing city-scale simulation, we demonstrate CoNICE's scalability in achieving consistency in convergence time, utilization of network resources, and reduced energy consumption.more » « less
An official website of the United States government

