skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Asynchronous Adaptive Sampling and Reduced-Order Modeling of Dynamic Processes by Robot Teams via Intermittently Connected Networks
This work presents an asynchronous multi-robot adaptive sampling strategy through the synthesis of an intermittently connected mobile robot communication network. The objective is to enable a team of robots to adaptively sample and model a nonlinear dynamic spatiotemporal process. By employing an intermittently connected communication network, the team is not required to maintain an all-time connected network enabling them to cover larger areas, especially when the team size is small. The approach first determines the next meeting locations for data exchange and as the robots move towards these predetermined locations, they take measurements along the way. The data is then shared with other team members at the designated meeting locations and a reducedorder-model (ROM) of the process is obtained in a distributed fashion. The ROM is used to estimate field values in areas without sensor measurements, which informs the path planning algorithm when determining a new meeting location for the team. The main contribution of this work is an intermittent communication framework for asynchronous adaptive sampling of dynamic spatiotemporal processes. We demonstrate the framework in simulation and compare different reduced-order models under full, all-time and intermittent connectivity.  more » « less
Award ID(s):
1812319
PAR ID:
10294295
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
4798 to 4805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Collaborative localization is an essential capability for a team of robots such as connected vehicles to collaboratively estimate object locations from multiple perspectives with reliant cooperation. To enable collaborative localization, four key challenges must be addressed, including modeling complex relationships between observed objects, fusing observations from an arbitrary number of collaborating robots, quantifying localization uncertainty, and addressing latency of robot communications. In this paper, we introduce a novel approach that integrates uncertainty-aware spatiotemporal graph learning and model-based state estimation for a team of robots to collaboratively localize objects. Specifically, we introduce a new uncertainty-aware graph learning model that learns spatiotemporal graphs to represent historical motions of the objects observed by each robot over time and provides uncertainties in object localization. Moreover, we propose a novel method for integrated learning and model-based state estimation, which fuses asynchronous observations obtained from an arbitrary number of robots for collaborative localization. We evaluate our approach in two collaborative object localization scenarios in simulations and on real robots. Experimental results show that our approach outperforms previous methods and achieves state-of-the-art performance on asynchronous collaborative localization. 
    more » « less
  2. We present an incremental scalable motion planning algorithm for finding maximally informative trajectories for decentralized mobile robots. These robots are deployed to observe an unknown spatial field, where the informativeness of observations is specified as a density function. Existing works that are typically restricted to discrete domains and synchronous planning often scale poorly depending on the size of the problem. Our goal is to design a distributed control law in continuous domains and an asynchronous communication strategy to guide a team of cooperative robots to visit the most informative locations within a limited mission duration. Our proposed Asynchronous Information Gathering with Bayesian Optimization (AsyncIGBO) algorithm extends ideas from asynchronous Bayesian Optimization (BO) to efficiently sample from a density function. It then combines them with decentralized reactive motion planning techniques to achieve efficient multi-robot information gathering activities. We provide a theoretical justification for our algorithm by deriving an asymptotic no-regret analysis with respect to a known spatial field. Our proposed algorithm is extensively validated through simulation and real-world experiment results with multiple robots. 
    more » « less
  3. The importance of communication in many multirobot information-gathering tasks requires the availability of reliable communication maps. These provide estimates of the radio signal strength and can be used to predict the presence of communication links between different locations of the environment. In the problem we consider, a team of mobile robots has to build such maps autonomously in a robot-to-robot communication setting. The solution we propose models the signal's distribution with a Gaussian Process and exploits different online sensing strategies to coordinate and guide the robots during their data acquisition. Our methods show interesting operative insights both in simulations and on real TurtleBot 2 platforms. 
    more » « less
  4. Long-term deployment of a fleet of mobile robots requires reliable and secure two-way communication channels between individual robots and remote human operators for supervision and tasking. Existing open-source solutions to this problem degrade in performance in challenging real-world situations such as intermittent and low-bandwidth connectivity, do not provide security control options, and can be computationally expensive on hardware-constrained mobile robot platforms. In this paper, we present Robofleet, a lightweight open-source system which provides inter-robot communication, remote monitoring, and remote tasking for a heterogenous fleet of ROS-enabled service-mobile robots that is designed with the practical goals of resilience to network variance and security control in mind.Robofleet supports multi-user, multi-robot communication via a central server. This architecture deduplicates network traffic between robots, significantly reducing overall network load when compared with native ROS communication. This server also functions as a single entrypoint into the system, enabling security control and user authentication. Individual robots run the lightweight Robofleet client, which is responsible for exchanging messages with the Robofleet server. It automatically adapts to adverse network conditions through backpressure monitoring as well as topic-level priority control, ensuring that safety-critical messages are successfully transmitted. Finally, the system includes a web-based visualization tool that can be run on any internet-connected, browser-enabled device to monitor and control the fleet.We compare Robofleet to existing methods of robotic communication, and demonstrate that it provides superior resilience to network variance while maintaining performance that exceeds that of widely-used systems. 
    more » « less
  5. We present a novel framework for collaboration amongst a team of robots performing Pose Graph Optimization (PGO) that addresses two important challenges for multi-robot SLAM: i) that of enabling information exchange "on-demand" via Active Rendezvous without using a map or the robot's location, and ii) that of rejecting outlying measurements. Our key insight is to exploit relative position data present in the communication channel between robots to improve groundtruth accuracy of PGO. We develop an algorithmic and experimental framework for integrating Channel State Information (CSI) with multi-robot PGO; it is distributed, and applicable in low-lighting or featureless environments where traditional sensors often fail. We present extensive experimental results on actual robots and observe that using Active Rendezvous results in a 64% reduction in ground truth pose error and that using CSI observations to aid outlier rejection reduces ground truth pose error by 32%. These results show the potential of integrating communication as a novel sensor for SLAM. 
    more » « less