skip to main content


Title: Asynchronous Adaptive Sampling and Reduced-Order Modeling of Dynamic Processes by Robot Teams via Intermittently Connected Networks
This work presents an asynchronous multi-robot adaptive sampling strategy through the synthesis of an intermittently connected mobile robot communication network. The objective is to enable a team of robots to adaptively sample and model a nonlinear dynamic spatiotemporal process. By employing an intermittently connected communication network, the team is not required to maintain an all-time connected network enabling them to cover larger areas, especially when the team size is small. The approach first determines the next meeting locations for data exchange and as the robots move towards these predetermined locations, they take measurements along the way. The data is then shared with other team members at the designated meeting locations and a reducedorder-model (ROM) of the process is obtained in a distributed fashion. The ROM is used to estimate field values in areas without sensor measurements, which informs the path planning algorithm when determining a new meeting location for the team. The main contribution of this work is an intermittent communication framework for asynchronous adaptive sampling of dynamic spatiotemporal processes. We demonstrate the framework in simulation and compare different reduced-order models under full, all-time and intermittent connectivity.  more » « less
Award ID(s):
1812319
NSF-PAR ID:
10294295
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
4798 to 4805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Collaborative localization is an essential capability for a team of robots such as connected vehicles to collaboratively estimate object locations from multiple perspectives with reliant cooperation. To enable collaborative localization, four key challenges must be addressed, including modeling complex relationships between observed objects, fusing observations from an arbitrary number of collaborating robots, quantifying localization uncertainty, and addressing latency of robot communications. In this paper, we introduce a novel approach that integrates uncertainty-aware spatiotemporal graph learning and model-based state estimation for a team of robots to collaboratively localize objects. Specifically, we introduce a new uncertainty-aware graph learning model that learns spatiotemporal graphs to represent historical motions of the objects observed by each robot over time and provides uncertainties in object localization. Moreover, we propose a novel method for integrated learning and model-based state estimation, which fuses asynchronous observations obtained from an arbitrary number of robots for collaborative localization. We evaluate our approach in two collaborative object localization scenarios in simulations and on real robots. Experimental results show that our approach outperforms previous methods and achieves state-of-the-art performance on asynchronous collaborative localization. 
    more » « less
  2. In many scenarios, information must be disseminated over intermittently-connected environments when the network infrastructure becomes unavailable, e.g., during disasters where first responders need to send updates about critical tasks. If such updates pertain to a shared data set, dissemination consistency is important. This can be achieved through causal ordering and consensus. Popular consensus algorithms, e.g., Paxos, are most suited for connected environments. While some work has been done on designing consensus algorithms for intermittently-connected environments, such as the One-Third Rule (OTR) algorithm, there is still need to improve their efficiency and timely completion. We propose CoNICE, a framework to ensure consistent dissemination of updates among users in intermittently-connected, infrastructure-less environments. It achieves efficiency by exploiting hierarchical namespaces for faster convergence, and lower communication overhead. CoNICE provides three levels of consistency to users, namely replication, causality and agreement. It uses epidemic propagation to provide adequate replication ratios, and optimizes and extends Vector Clocks to provide causality. To ensure agreement, CoNICE extends OTR to also support long-term network fragmentation and decision invalidation scenarios; we define local and global consensus pertaining to within and across fragments respectively. We integrate CoNICE's consistency preservation with a naming schema that follows a topic hierarchy-based dissemination framework, to improve functionality and performance. Using the Heard-Of model formalism, we prove CoNICE's consensus to be correct. Our technique extends previously established proof methods for consensus in asynchronous environments. Performing city-scale simulation, we demonstrate CoNICE's scalability in achieving consistency in convergence time, utilization of network resources, and reduced energy consumption. 
    more » « less
  3. null (Ed.)
    Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures. 
    more » « less
  4. This study proposes a hierarchically integrated framework for safe task and motion planning (TAMP) of bipedal locomotion in a partially observable environment with dynamic obstacles and uneven terrain. The high-level task planner employs linear temporal logic for a reactive game synthesis between the robot and its environment and provides a formal guarantee on navigation safety and task completion. To address environmental partial observability, a belief abstraction model is designed by partitioning the environment into multiple belief regions and employed at the high-level navigation planner to estimate the dynamic obstacles' location. This additional location information of dynamic obstacles offered by belief abstraction enables less conservative long-horizon navigation actions beyond guaranteeing immediate collision avoidance. Accordingly, a synthesized action planner sends a set of locomotion actions to the middle-level motion planner while incorporating safe locomotion specifications extracted from safety theorems based on a reduced-order model (ROM) of the locomotion process. The motion planner employs the ROM to design safety criteria and a sampling algorithm to generate nonperiodic motion plans that accurately track high-level actions. At the low level, a foot placement controller based on an angular-momentum linear inverted pendulum model is implemented and integrated with an ankle-actuated passivity-based controller for full-body trajectory tracking. To address external perturbations, this study also investigates the safe sequential composition of the keyframe locomotion state and achieves robust transitions against external perturbations through reachability analysis. The overall TAMP framework is validated with extensive simulations and hardware experiments on bipedal walking robots Cassie and Digit designed by Agility Robotics. 
    more » « less
  5. Battery-free and intermittently powered devices offer long lifetimes and enable deployment in new applications and environments. Unfortunately, developing sophisticated inference-capable applications is still challenging due to the lack of platform support for more advanced (32-bit) microprocessors and specialized accelerators---which can execute data-intensive machine learning tasks, but add complexity across the stack when dealing with intermittent power. We present Protean to bridge the platform gap for inference-capable battery-free sensors. Designed for runtime scalability, meeting the dynamic range of energy harvesters with matching heterogeneous processing elements like neural network accelerators. We develop a modular "plug-and-play" hardware platform, SuperSensor, with a reconfigurable energy storage circuit that powers a 32-bit ARM-based microcontroller with a convolutional neural network accelerator. An adaptive task-based runtime system, Chameleon, provides intermittency-proof execution of machine learning tasks across heterogeneous processing elements. The runtime automatically scales and dispatches these tasks based on incoming energy, current state, and programmer annotations. A code generator, Metamorph, automates conversion of ML models to intermittent safe execution across heterogeneous compute elements. We evaluate Protean with audio and image workloads and demonstrate up to 666x improvement in inference energy efficiency by enabling usage of modern computational elements within intermittent computing. Further, Protean provides up to 166% higher throughput compared to non-adaptive baselines. 
    more » « less