- Award ID(s):
- 1918497
- Publication Date:
- NSF-PAR ID:
- 10294465
- Journal Name:
- IEEE Cluster 2021
- Sponsoring Org:
- National Science Foundation
More Like this
-
Automated techniques for analyzing floating-point code for roundoff error as well as control-flow instability are of growing importance. It is important to compute rigorous estimates of roundoff error, as well as determine the extent of control-flow instability due to roundoff error flowing into conditional statements. Currently available analysis techniques are either non-rigorous or do not produce tight roundoff error bounds in many practical situations. Our approach embodied in a new tool called \seesaw employs {\em symbolic reverse-mode automatic differentiation}, smoothly handling conditionals, and offering tight error bounds. Key steps in \seesaw include weakening conditionals to accommodate roundoff error, computing a symbolic error function that depends on program paths taken, and optimizing this function whose domain may be non-rectangular by paving it with a rectangle-based cover. Our benchmarks cover many practical examples for which such rigorous analysis has hitherto not been applied, or has yielded inferior results.
-
Virtually all real-valued computations are carried out using floating-point data types and operations. With increasing emphasis on overall computational efficiency, compilers are increasingly attempting to optimize floating-point expressions. Practical reasoning about the correctness of these optimizations requires error analysis procedures that are rigorous (ideally, they can generate proof certificates), can handle a wide variety of operators (e.g., transcendentals), and handle all normal programmatic constructs (e.g., conditionals and loops). Unfortunately, none of today’s approaches can achieve this combination. This position paper summarizes recent progress achieved in the community on this topic. It then showcases the component techniques present within our own rigorous floating-point precision tuning framework called FPTuner—essentially offering a collection of “grab and go” tools that others can benefit from. Finally, we present FPTuner’s limitations and describe how we can exploit contemporaneous research to improve it.
-
The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance frommore »
-
While standard statistical inference techniques and machine learning generalization bounds assume that tests are run on data selected independently of the hypotheses, practical data analysis and machine learning are usually iterative and adaptive processes where the same holdout data is often used for testing a sequence of hypotheses (or models), which may each depend on the outcome of the previous tests on the same data. In this work, we present RADABOUND a rigorous, efficient and practical procedure for controlling the generalization error when using a holdout sample for multiple adaptive testing. Our solution is based on a new application of the Rademacher Complexity generalization bounds, adapted to dependent tests. We demonstrate the statistical power and practicality of our method through extensive simulations and comparisons to alternative approaches. In particular, we show that our rigorous solution is a substantially more powerful and efficient than the differential privacy based approach proposed in Dwork et al. [1]-[3].
-
Obeid, Iyad Selesnick (Ed.)The Temple University Hospital EEG Corpus (TUEG) [1] is the largest publicly available EEG corpus of its type and currently has over 5,000 subscribers (we currently average 35 new subscribers a week). Several valuable subsets of this corpus have been developed including the Temple University Hospital EEG Seizure Corpus (TUSZ) [2] and the Temple University Hospital EEG Artifact Corpus (TUAR) [3]. TUSZ contains manually annotated seizure events and has been widely used to develop seizure detection and prediction technology [4]. TUAR contains manually annotated artifacts and has been used to improve machine learning performance on seizure detection tasks [5]. In this poster, we will discuss recent improvements made to both corpora that are creating opportunities to improve machine learning performance. Two major concerns that were raised when v1.5.2 of TUSZ was released for the Neureka 2020 Epilepsy Challenge were: (1) the subjects contained in the training, development (validation) and blind evaluation sets were not mutually exclusive, and (2) high frequency seizures were not accurately annotated in all files. Regarding (1), there were 50 subjects in dev, 50 subjects in eval, and 592 subjects in train. There was one subject common to dev and eval, five subjects common to dev andmore »