skip to main content


Title: An Analysis of the Role of Situated Learning in Starting a Security Culture in a Software Company
We conducted an ethnographic study of a software development company to explore if and how a development team adopts security practices into the development lifecycle. A PhD student in computer science with prior training in qualitative research methods was embedded in the company for eight months. The researcher joined the company as a software engineer and participated in all development activities as a new hire would, while also making observations on the development practices. During the fieldwork, we observed a positive shift in the development team's practices regarding secure development. Our analysis of data indicates that the shift can be attributed to enabling all software engineers to see how security knowledge could be applied to the specific software products they worked on. We also observed that by working with other developers to apply security knowledge under the concrete context where the software products were built, developers who possessed security expertise and wanted to push for more secure development practices (security advocates) could be effective in achieving this goal. Our data point to an interactive learning process where software engineers in a development team acquire knowledge, apply it in practice, and contribute to the team, leading to the creation of a set of preferred practices, or "culture" of the team. This learning process can be understood through the lens of the situated learning framework, where it is recognized that knowledge transfer happens within a community of practice, and applying the knowledge is the key in individuals (software engineers) acquiring it and the community (development team) embodying such knowledge in its practice. Our data show that enabling a situated learning environment for security gives rise to security-aware software engineers. We discuss the roles of management and security advocates in driving the learning process to start a security culture in a software company.  more » « less
Award ID(s):
1801633
NSF-PAR ID:
10294500
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Seventeenth Symposium on Usable Privacy and Security (SOUPS 2021)
Page Range / eLocation ID:
617--632
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an ethnographic study of secure software development processes in a software company using the anthropological research method of participant observation. Two PhD students in computer science trained in qualitative methods were embedded in a software company for 1.5 years of total research time. The researchers participated in everyday work activities such as coding and meetings, and observed software (in)security phenomena both through investigating historical data (code repositories and ticketing system records), and through pen-testing the developed software and observing developers’ and management’s reactions to the discovered vulnerabilities. Our study found that 1) security vulnerabilities are sometimes intentionally introduced and/or overlooked due to the difficulty in managing the various stakeholders’ responsibilities in an economic ecosystem, and cannot be simply blamed on developers’ lack of knowledge or skills; 2) accidental vulnerabilities discovered in the pen-testing process produce different reactions in the development team, often times contrary to what a security researcher would predict. These findings highlight the nuanced nature of the root causes of software vulnerabilities and indicate the need to take into account a significant amount of contextual information to understand how and why software vulnerabilities emerge during software development. Rather than simply addressing deficits in developer knowledge or practice, this research sheds light on at times forgotten human factors that significantly impact the security of software developed by actual companies. Our analysis also shows that improving software security in the development process can benefit from a co-creation model, where security experts work side by side with software developers to better identify security concerns and provide tools that are readily applicable within the specific context of the software development workflow. 
    more » « less
  2. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  3. We investigate the privacy practices of labor organizers in the computing technology industry and explore the changes in these practices as a response to remote work. Our study is situated at the intersection of two pivotal shifts in workplace dynamics: (a) the increase in online workplace communications due to remote work, and (b) the resurgence of the labor movement and an increase in collective action in workplaces-especially in the tech industry, where this phenomenon has been dubbed the tech worker movement. The shift of work-related communications to online digital platforms in response to an increase in remote work is creating new opportunities for and risks to the privacy of workers. These risks are especially significant for organizers of collective action, with several well-publicized instances of retaliation against labor organizers by companies. Through a series of qualitative interviews with 29 tech workers involved in collective action, we investigate how labor organizers assess and mitigate risks to privacy while engaging in these actions. Among the most common risks that organizers experienced are retaliation from their employer, lateral worker conflict, emotional burnout, and the possibility of information about the collective effort leaking to management. Depending on the nature and source of the risk, organizers use a blend of digital security practices and community-based mechanisms. We find that digital security practices are more relevant when the threat comes from management, while community management and moderation are central to protecting organizers from lateral worker conflict. Since labor organizing is a collective rather than individual project, individual privacy and collective privacy are intertwined, sometimes in conflict and often mutually constitutive. Notions of privacy that solely center individuals are often incompatible with the needs of organizers, who noted that safety in numbers could only be achieved when workers presented a united front to management. Based on our interviews, we identify key topics for future research, such as the growing prevalence of surveillance software and the needs of international and gig worker organizers.We conclude with design recommendations that can help create safer, more secure and more private tools to better address the risks that organizers face. 
    more » « less
  4. We investigate the privacy practices of labor organizers in the computing technology industry and explore the changes in these practices as a response to remote work. Our study is situated at the intersection of two pivotal shifts in workplace dynamics: (a) the increase in online workplace communications due to remote work, and (b) the resurgence of the labor movement and an increase in collective action in workplaces— especially in the tech industry, where this phenomenon has been dubbed the tech worker movement. The shift of work-related communications to online digital platforms in response to an increase in remote work is creating new opportunities for and risks to the privacy of workers. These risks are especially significant for organizers of collective action, with several well-publicized instances of retaliation against labor organizers by companies. Through a series of qualitative interviews with 29 tech workers involved in collective action, we investigate how labor organizers assess and mitigate risks to privacy while engaging in these actions. Among the most common risks that organizers experienced are retaliation from their employer, lateral worker conflict, emotional burnout, and the possibility of information about the collective effort leaking to management. Depending on the nature and source of the risk, organizers use a blend of digital security practices and community-based mechanisms. We find that digital security practices are more relevant when the threat comes from management, while community management and moderation are central to protecting organizers from lateral worker conflict. Since labor organizing is a collective rather than individual project, individual privacy and collective privacy are intertwined, sometimes in conflict and often mutually constitutive. Notions of privacy that solely center individuals are often incompatible with the needs of organizers, who noted that safety in numbers could only be achieved when workers presented a united front to management. Based on our interviews, we identify key topics for future research, such as the growing prevalence of surveillance software and the needs of international and gig worker organizers. We conclude with design recommendations that can help create safer, more secure and more private tools to better address the risks that organizers face. 
    more » « less
  5. Consistent growth in the software sector of the world economies has attracted both targeted and mass-scale attacks by cybercriminals. Producing reliable and secure software is difficult because of its growing complexity and the increasing number of sophisticated attacks. Developers can’t afford to believe that their security measures during development are perfect and impenetrable. In fact, many new software security vulnerabilities are discovered on a daily basis. Therefore, it is vital to identify and resolve those security vulnerabilities as early as possible. Security Vulnerability Testing (SVT), as an active defense, is the key to the agile detection and prevention of known and unknown security vulnerabilities. However, many software engineers lack the awareness of the importance of security vulnerability and the necessary knowledge and skills at the testing and operational stages. As a first step towards filling this gap, this paper advocates for building skills in selecting proper benchmarks for the assessment of SVT tools to enable distinguishing valuable security tools from trivial ones. Thus, we provide a set of requirements in fulfillment of this need, primarily addressing newcomers and researcher to the discipline. 
    more » « less