skip to main content


Title: Genetic mapping and phenotypic analysis of shotH.3.2 in Drosophila melanogaster
Genetic screens are used to identify genes involved in specific biological processes. An EMS mutagenesis screen in Drosophila melanogaster identified growth control phenotypes in the developing eye. One mutant line from this screen, H.3.2, was phenotypically characterized using the FLP/FRT system and genetically mapped by complementation analysis and genomic sequencing by undergraduate students participating in the multi-institution Fly-CURE consortium. H.3.2 was found to have a nonsense mutation in short stop (shot), an ortholog of the mammalian spectraplakin dystonin (DST). shot and DST are involved in cytoskeletal organization and play roles during cell growth and proliferation.  more » « less
Award ID(s):
2021146
NSF-PAR ID:
10294566
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
microPublication biology
ISSN:
2578-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mutation I.3.2 was previously identified in a FLP/FRT screen of chromosome 2R for conditional growth regulators. Here we report the phenotypic characterization and genetic mapping of I.3.2 by undergraduate students participating in Fly-CURE, a pedagogical program that teaches the science of genetics through a classroom research experience. We find that creation of I.3.2 cell clones in the developing eye-antennal imaginal disc causes a headless adult phenotype, suggestive of both autonomous and non-autonomous effects on cell growth or viability. We also identify the I.3.2 mutation as a loss-of-function allele of the gene centromere identifier (cid), which encodes centromere-specific histone H3 variant critical for chromosomal segregation. 
    more » « less
  2. The mutation I.3.2 was previously identified in a FLP/FRT screen of chromosome 2R for conditional growth regulators. Here we report the phenotypic characterization and genetic mapping of I.3.2 by undergraduate students participating in Fly-CURE, a pedagogical program that teaches the science of genetics through a classroom research experience. We find that creation of I.3.2 cell clones in the developing eye-antennal imaginal disc causes a headless adult phenotype, suggestive of both autonomous and non-autonomous effects on cell growth or viability. We also identify the I.3.2 mutation as a loss-of-function allele of the gene centromere identifier (cid), which encodes centromere-specific histone H3 variant critical for chromosomal segregation. 
    more » « less
  3. An EMS-based forward genetic screen was conducted in an apoptotic null background to identify genetic aberrations that contribute to regulation of cell growth in Drosophila melanogaster. The current work maps the genomic location of one of the identified mutants, L.3.2. Genetic crosses conducted through the Fly-CURE consortium determined that the gene locus for the L.3.2 mutation is p47 on chromosome 2R. 
    more » « less
  4. Task-oriented Dialogue (ToD) agents are mostly limited to a few widely-spoken languages, mainly due to the high cost of acquiring training data for each language. Existing low-cost approaches that rely on cross-lingual embeddings or naive machine translation sacrifice a lot of accuracy for data efficiency, and largely fail in creating a usable dialogue agent. We propose automatic methods that use ToD training data in a source language to build a high-quality functioning dialogue agent in another target language that has no training data (i.e. zero-shot) or a small training set (i.e. fewshot). Unlike most prior work in cross-lingual ToD that only focuses on Dialogue State Tracking (DST), we build an end-to-end agent. We show that our approach closes the accuracy gap between few-shot and existing fullshot methods for ToD agents. We achieve this by (1) improving the dialogue data representation, (2) improving entity-aware machine translation, and (3) automatic filtering of noisy translations. We evaluate our approach on the recent bilingual dialogue dataset BiToD. In Chinese to English transfer, in the zero-shot setting, our method achieves 46.7% and 22.0% in Task Success Rate (TSR) and Dialogue Success Rate (DSR) respectively. In the few-shot setting where 10% of the data in the target language is used, we improve the state-of-the-art by 15.2% and 14.0%, coming within 5% of full-shot training. 
    more » « less
  5. Abstract Digital maskless lithography is gaining popularity due to its unique ability to quickly fabricate high-resolution parts without the use of physical masks. By implementing controlled grayscaling and exposure control, it has the potential to replace conventional lithography altogether. However, despite the existence of a theoretical foundation for photopolymerization, observing the voxel growth process in situ is a significant challenge. This difficulty can be attributed to several factors, including the microscopic size of the parts, the low refractive index difference between cured and uncured resin, and the rapid rate of photopolymerization once it crosses a certain threshold. As such, there is a pressing need for a system that can address these issues. To tackle these challenges, the paper proposes a modified Schlieren-based observation system that utilizes confocal magnifying optics to create a virtual screen at the camera's focal plane. This system allows for the visualization of the minute changes in refractive indices made visible by the use of Schlieren optics, specifically the deflection of light by the changing density-induced refractive index gradient. The use of focusing optics provides the system with the flexibility needed to position the virtual screen and implement optical magnification. The researchers employed single-shot binary images with different pixel numbers to fabricate voxels and examine the various factors affecting voxel shape, including chemical composition and energy input. The observed results were then compared against simulations based on Beer–Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results validated the effectiveness of the proposed observation system. The paper also briefly discusses the application of this system in fabricating microlenses and its advantages over theoretical model-based profile predictions. 
    more » « less