skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genetic mapping and phenotypic analysis of shotH.3.2 in Drosophila melanogaster
Genetic screens are used to identify genes involved in specific biological processes. An EMS mutagenesis screen in Drosophila melanogaster identified growth control phenotypes in the developing eye. One mutant line from this screen, H.3.2, was phenotypically characterized using the FLP/FRT system and genetically mapped by complementation analysis and genomic sequencing by undergraduate students participating in the multi-institution Fly-CURE consortium. H.3.2 was found to have a nonsense mutation in short stop (shot), an ortholog of the mammalian spectraplakin dystonin (DST). shot and DST are involved in cytoskeletal organization and play roles during cell growth and proliferation.  more » « less
Award ID(s):
2021146
PAR ID:
10294566
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
microPublication biology
ISSN:
2578-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An EMS-based forward genetic screen was conducted in an apoptotic null background to identify genetic aberrations that contribute to regulation of cell growth in Drosophila melanogaster. The current work maps the genomic location of one of the identified mutants, L.3.2. Genetic crosses conducted through the Fly-CURE consortium determined that the gene locus for the L.3.2 mutation is p47 on chromosome 2R. 
    more » « less
  2. The mutation I.3.2 was previously identified in a FLP/FRT screen of chromosome 2R for conditional growth regulators. Here we report the phenotypic characterization and genetic mapping of I.3.2 by undergraduate students participating in Fly-CURE, a pedagogical program that teaches the science of genetics through a classroom research experience. We find that creation of I.3.2 cell clones in the developing eye-antennal imaginal disc causes a headless adult phenotype, suggestive of both autonomous and non-autonomous effects on cell growth or viability. We also identify the I.3.2 mutation as a loss-of-function allele of the gene centromere identifier (cid), which encodes centromere-specific histone H3 variant critical for chromosomal segregation. 
    more » « less
  3. The mutation I.3.2 was previously identified in a FLP/FRT screen of chromosome 2R for conditional growth regulators. Here we report the phenotypic characterization and genetic mapping of I.3.2 by undergraduate students participating in Fly-CURE, a pedagogical program that teaches the science of genetics through a classroom research experience. We find that creation of I.3.2 cell clones in the developing eye-antennal imaginal disc causes a headless adult phenotype, suggestive of both autonomous and non-autonomous effects on cell growth or viability. We also identify the I.3.2 mutation as a loss-of-function allele of the gene centromere identifier (cid), which encodes centromere-specific histone H3 variant critical for chromosomal segregation. 
    more » « less
  4. Genetic screens in Drosophila melanogaster have long been used to identify genes found in a variety of developmental, cellular, and behavioral processes. Here we describe the characterization and mapping of a mutation identified in a conditional screen for genetic regulators of cell growth and cell division. Within a Flp/FRT system, mutant G.3.2 results in a reduction of mutant tissue and a rough eye phenotype. We find that G.3.2 maps to the gene cnk, providing further support that cnk is a critical gene in Drosophila eye development. This mutant was characterized, mapped and sequenced by undergraduate students within the Fly-CURE consortium. 
    more » « less
  5. null (Ed.)
    Genetic screens have been used to identify genes involved in the regulation of different biological processes. We identified growth mutants in a Flp/FRT screen using the Drosophila melanogaster eye to identify conditional regulators of cell growth and cell division. One mutant identified from this screen, B.2.16, was mapped and characterized by researchers in undergraduate genetics labs as part of the Fly-CURE. We find that B.2.16 is a non-lethal genetic modifier of the Dark82 mosaic eye phenotype. 
    more » « less