skip to main content


Title: Genetic Mapping of a new Hippo allele, HpoN.1.2, in Drosophila melanogaster
Genetic screens provide a mechanism to identify genes involved with different cellular and organismal processes. Using a Flp/FRT screen in the Drosophila eye we identified mutations that result in alterations and de-regulation of cell growth and division. From this screen a group of undergraduate researchers part of the Fly-CURE consortium mapped and characterized a new allele of the gene Hippo, HpoN.1.2.  more » « less
Award ID(s):
2021146
NSF-PAR ID:
10294568
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
microPublication biology
ISSN:
2578-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One of the most common methods for inferring galaxy attenuation curves is via spectral energy distribution (SED) modeling, where the dust attenuation properties are modeled simultaneously with other galaxy physical properties. In this paper, we assess the ability of SED modeling to infer these dust attenuation curves from broadband photometry, and suggest a new flexible model that greatly improves the accuracy of attenuation curve derivations. To do this, we fit mock SEDs generated from the simba cosmological simulation with the prospector SED fitting code. We consider the impact of the commonly assumed uniform screen model and introduce a new nonuniform screen model parameterized by the fraction of unobscured stellar light. This nonuniform screen model allows for a nonzero fraction of stellar light to remain unattenuated, resulting in a more flexible attenuation curve shape by decoupling the shape of the UV attenuation curve from the optical attenuation curve. The ability to constrain the dust attenuation curve is significantly improved with the use of a nonuniform screen model, with the median offset in UV attenuation decreasing from −0.30 dex with a uniform screen model to −0.17 dex with the nonuniform screen model. With this increase in dust attenuation modeling accuracy, we also improve the star formation rates (SFRs) inferred with the nonuniform screen model, decreasing the SFR offset on average by 0.12 dex. We discuss the efficacy of this new model, focusing on caveats with modeling star-dust geometries and the constraining power of available SED observations. 
    more » « less
  2. ABSTRACT

    We describe how the observed polarization properties of an astronomical object are related to its intrinsic polarization properties and the finite temporal and spectral resolutions of the observing device. Moreover, we discuss the effect that a scattering screen, with non-zero magnetic field, between the source and observer has on the observed polarization properties. We show that the polarization properties are determined by the ratio of observing bandwidth and coherence bandwidth of the scattering screen and the ratio of temporal resolution of the instrument and the variability time of screen, as long as the length over which the Faraday rotation induced by the screen changes by ∼π is smaller than the size of the screen visible to the observer. We describe the conditions under which a source that is 100 per cent linearly polarized intrinsically might be observed as partially depolarized, and how the source’s temporal variability can be distinguished from the temporal variability induced by the scattering screen. In general, linearly polarized waves passing through a magnetized scattering screen can develop a significant circular polarization. We apply the work to the observed polarization properties of a few fast radio bursts (FRBs), and outline potential applications to pulsars.

     
    more » « less
  3. Web data records are usually accompanied by auxiliary webpage segments, such as filters, sort options, search form, and multi-page links, to enhance interaction efficiency and convenience for end users. However, blind and visually impaired (BVI) persons are presently unable to fully exploit the auxiliary segments like their sighted peers, since these segments are scattered all across the screen, and as such assistive technologies used by BVI users, i.e., screen reader and screen magnifier, are not geared for efficient interaction with such scattered content. Specifically, for blind screen reader users, content navigation is predominantly one-dimensional despite the support for skipping content, and therefore navigating to-and-fro between different parts of the webpage is tedious and frustrating. Similarly, low vision screen magnifier users have to continuously pan back-and-forth between different portions of a webpage, given that only a portion of the screen is viewable at any instant due to content enlargement. The extant techniques to overcome inefficient web interaction for BVI users have mostly focused on general web-browsing activities, and as such they provide little to no support for data record-specific interaction activities such as filtering and sorting – activities that are equally important for facilitating quick and easy access to desired data records. To fill this void, we present InSupport, a browser extension that: (i) employs custom machine learning-based algorithms to automatically extract auxiliary segments on any webpage containing data records; and (ii) provides an instantly accessible proxy one-stop interface for easily navigating the extracted auxiliary segments using either basic keyboard shortcuts or mouse actions. Evaluation studies with 14 blind participants and 16 low vision participants showed significant improvement in web usability with InSupport, driven by increased reduction in interaction time and user effort, compared to the state-of-the-art solutions. 
    more » « less
  4. null (Ed.)
    Many people with low vision rely on screen-magnifier assistive technology to interact with productivity applications such as word processors, spreadsheets, and presentation software. Despite the importance of these applications, little is known about their usability with respect to low-vision screen-magnifier users. To fill this knowledge gap, we conducted a usability study with 10 low-vision participants having different eye conditions. In this study, we observed that most usability issues were predominantly due to high spatial separation between main edit area and command ribbons on the screen, as well as the wide span grid-layout of command ribbons; these two GUI aspects did not gel with the screen-magnifier interface due to lack of instantaneous WYSIWYG (What You See Is What You Get) feedback after applying commands, given that the participants could only view a portion of the screen at any time. Informed by the study findings, we developed MagPro, an augmentation to productivity applications, which significantly improves usability by not only bringing application commands as close as possible to the user's current viewport focus, but also enabling easy and straightforward exploration of these commands using simple mouse actions. A user study with nine participants revealed that MagPro significantly reduced the time and workload to do routine command-access tasks, compared to using the state-of-the-art screen magnifier. 
    more » « less
  5. null (Ed.)
    Accessible onscreen keyboards require people who are blind to keep out their phone at all times to search for visual affordances they cannot see. Is it possible to re-imagine text entry without a reference screen? To explore this question, we introduce screenless keyboards as aural flows (keyflows): rapid auditory streams of Text-To-Speech (TTS) characters controllable by hand gestures. In a study, 20 screen-reader users experienced keyflows to perform initial text entry. Typing took inordinately longer than current screen-based keyboards, but most participants preferred screen-free text entry to current methods, especially for short messages on-the-go. We model navigation strategies that participants enacted to aurally browse entirely auditory keyboards and discuss their limitation and benefits for daily access. Our work points to trade-offs in user performance and user experience for situations when blind users may trade typing speed with the benefit of being untethered from the screen. 
    more » « less