skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Passive impedance-loaded surface acoustic wave (SAW) sensor for soil condition monitoring
This paper presents an innovative system to monitor the physical soil conditions needed for modern agriculture. The current technique to measure soil properties relies on taking samples from place to place and takes them for laboratory testing. To build up and monitor a data-based system for a large area, such a method is costly and time-consuming. This paper reported our recent work on the development of a passive impedance-loaded surface acoustic wave (SAW) sensor for a low-cost soil condition monitoring system. The SAW sensor will eventually be connected to an antenna and a impedance-based sensor for autonomous soil nutrient sensing. In this research, first, the coupling-of-modes (COM) analysis was performed to simulate the SAW device. The sensors were fabricated with E-beam lithography techniques and tested with different external load resistances. We investigated how the sensor signal changed with the external resistance loading. The experimental results were verified by comparing them with simulation results.  more » « less
Award ID(s):
1841558
PAR ID:
10294700
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. ASME. IMECE2020
Volume:
13
Page Range / eLocation ID:
V013T13A009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To increase the production of crops, chemical fertilizers are used in crop fields. However, underuse or overuse cannot increase crop yields but even decrease them and cause severe environmental problems. Thus, the detection and monitoring of chemical concentration are increasingly important. To build up and monitor a data-based system for a large area, such a method is costly and time-consuming. In this research, we developed a conductive polymer-based sensor to detect nitrate concentrations in soil water. Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was used as our sensing material. To increase its conductivity, we used the vacuum phase polymerization method to achieve a high conductive and stable polymer film. The conductivity of the polymer film is 500 S/cm. Our results have demonstrated that the conductive polymer-based sensors have high sensitivity to nitrate solution. The response to 1000 ppm nitrate solution is 47.2% (Response = (Initrate - IDIwate) / IDIwater). The sensors can detect nitrate range from 1ppm to 1000 ppm. The response time is less than 1 minute. This impedance-based sensor will eventually be integrated with the surface acoustic wave sensors, combined with an antenna and a GPR unit for low maintenance, autonomous, and in-situ soil nutrient sensing 
    more » « less
  2. null (Ed.)
    To increase the production of crops, chemical fertilizers are used in crop fields. However, underuse or overuse cannot increase crop yields but even decrease them and cause severe environmental problems. Thus, the detection and monitoring of chemical concentration are increasingly important. To build up and monitor a data-based system for a large area, such a method is costly and time-consuming. In this research, we developed a conductive polymer-based sensor to detect nitrate concentrations in soil water. Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was used as our sensing material. To increase its conductivity, we used the vacuum phase polymerization method to achieve a high conductive and stable polymer film. The conductivity of the polymer film is 500 S/cm. Our results have demonstrated that the conductive polymer-based sensors have high sensitivity to nitrate solution. The response to 1000 ppm nitrate solution is 47.2% (Response = (Initrate - IDIwate) / IDIwater). The sensors can detect nitrate range from 1ppm to 1000 ppm. The response time is less than 1 minute. This impedance-based sensor will eventually be integrated with the surface acoustic wave sensors, combined with an antenna and a GPR unit for low maintenance, autonomous, and in-situ soil nutrient sensing. 
    more » « less
  3. Abstract This study uses a small unmanned aircraft system equipped with a multispectral sensor to assess various vegetation indices (VIs) for their potential to monitor iron deficiency chlorosis (IDC) in a grain sorghum (Sorghum bicolorL.) crop. IDC is a nutritional disorder that stunts a plants’ growth and causes its leaves to yellow due to an iron deficit. The objective of this project is to find the best VI to detect and monitor IDC. A series of flights were completed over the course of the growing season and processed using Structure‐from‐Motion photogrammetry to create orthorectified, multispectral reflectance maps in the red, green, red‐edge, and near‐infrared wavelengths. Ground data collection methods were used to analyze stress, chlorophyll levels, and grain yield, correlating them to the multispectral imagery for ground control and precise crop examination. The reflectance maps and soil‐removed reflectance maps were used to calculate 25 VIs whose separability was then calculated using a two‐class distance measure, determining which contained the largest separation between the pixels representing IDC and healthy vegetation. The field‐acquired data were used to conclude which VIs achieved the best results for the dataset as a whole and at each level of IDC (low, moderate, and severe). It was concluded that the MERIS terrestrial chlorophyll index, normalized difference red‐edge, and normalized green (NG) indices achieved the highest amount of separation between plants with IDC and healthy vegetation, with the NG reaching the highest levels of separability for both soil‐included and soil‐removed VIs. 
    more » « less
  4. In this work, we present two embedded soft optical waveguide sensors designed for real-time onboard configuration sensing in soft actuators for robotic locomotion. Extending the contributions of our collaborators who employed external camera systems to monitor the gaits of twisted-beam structures, we strategically integrate our OptiGap sensor system into these structures to monitor their dynamic behavior. The system is validated through machine learning models that correlate sensor data with camera-based motion tracking, achieving high accuracy in predicting forward or reverse gaits and validating its capability for real-time sensing. Our second sensor, consisting of a square cross-section fiber pre-twisted to 360 degrees, is designed to detect the chirality of reconfigurable twisted beams. Experimental results confirm the sensor’s effectiveness in capturing variations in light transmittance corresponding to twist angle, serving as a reliable chirality sensor. The successful integration of these sensors not only improves the adaptability of soft robotic systems but also opens avenues for advanced control algorithms. 
    more » « less
  5. Surface acoustic wave (SAW) devices can generate significant heat due to acoustic damping when liquid droplets are placed on them, and this heating (acoustothermal heating) can be used for microscale heating purposes. However, SAW devices are often used in biosensing applications where significant acoustothermal temperature rise can damage the proteins or the biomolecules and destroy the sensor performances. In this paper, we have performed thermal camera-based experiments to study the heating phenomena and how they can be controlled by varying droplet sizes. We found that the temperature rise linearly increases with increasing SAW power whereas it decreases with increasing droplet volume. Hence, a larger liquid volume and lower SAW power can be used in biosensors to avoid significant heating. 
    more » « less