skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Doing Geology in an Online World
The earth sciences, all sciences, are doing more and more of their activities online. Although moving online was previously a well-established trend, the COVID-19 crisis has accelerated this, as faculty, teachers, and students came to understand all too well during 2020. Ordinary activities, such as field trips, field camps, and even professional meetings like GSA 2020 Connects Online, have moved mostly online (Tikoff et al., 2020). We have had to devise new ways of teaching that are entirely outside of our experience. Rather than wistfully wishing for a return to times past, the current situation is an opportunity to explore change and depart from our old ways of doing things, striving to make our science and our geology richer to each other. Returning to and reliving the past is what we do in our geology, but it should not be what we do as geologists and scientists. At the same time, it is becoming more critical for earth scientists, and all scientists, to better engage the public and stakeholders in their work, their data, and their insights and conclusions. We have been facing not only a pandemic of disease but also a pandemic of climate change accompanied by the malady of denying science. Because the subject of geology is our shared planet and environment, geoscientists can present much of their work in a way that is relevant to the public. We have an advantage in that the public can see what we do, look directly at what we study, and appreciate where samples come from for our analyses. The basis of our science surrounds us. The online world further opens our science, whether in geologic maps, pictures of thin sections of rocks, or a numerical age for a sample, to general observation. This new openness and connectedness can give us the power of remote participation and access  more » « less
Award ID(s):
1928389
PAR ID:
10294719
Author(s) / Creator(s):
Date Published:
Journal Name:
GSA today
Volume:
31
Issue:
2
ISSN:
1943-2690
Page Range / eLocation ID:
4-7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long-term environmental research networks are one approach to advancing local, regional, and global environmental science and education. A remarkable number and wide variety of environmental research networks operate around the world today. These are diverse in funding, infrastructure, motivating questions, scientific strengths, and the sciences that birthed and maintain the networks. Some networks have individual sites that were selected because they had produced invaluable long-term data, while other networks have new sites selected to span ecological gradients. However, all long-term environmental networks share two challenges. Networks must keep pace with scientific advances and interact with both the scientific community and society at large. If networks fall short of successfully addressing these challenges, they risk becoming irrelevant. The objective of this paper is to assert that the biogeosciences offer environmental research networks a number of opportunities to expand scientific impact and public engagement. We explore some of these opportunities with four networks: the International Long-Term Ecological Research Network programs (ILTERs), critical zone observatories (CZOs), Earth and ecological observatory networks (EONs), and the FLUXNET program of eddy flux sites. While these networks were founded and expanded by interdisciplinary scientists, the preponderance of expertise and funding has gravitated activities of ILTERs and EONs toward ecology and biology, CZOs toward the Earth sciences and geology, and FLUXNET toward ecophysiology and micrometeorology. Our point is not to homogenize networks, nor to diminish disciplinary science. Rather, we argue that by more fully incorporating the integration of biology and geology in long-term environmental research networks, scientists can better leverage network assets, keep pace with the ever-changing science of the environment, and engage with larger scientific and public audiences. 
    more » « less
  2. Abstract. Long-term environmental research networks are one approach toadvancing local, regional, and global environmental science and education. Aremarkable number and wide variety of environmental research networks operatearound the world today. These are diverse in funding, infrastructure,motivating questions, scientific strengths, and the sciences that birthed andmaintain the networks. Some networks have individual sites that wereselected because they had produced invaluable long-term data, while othernetworks have new sites selected to span ecological gradients. However, alllong-term environmental networks share two challenges. Networks must keeppace with scientific advances and interact with both the scientific communityand society at large. If networks fall short of successfully addressing thesechallenges, they risk becoming irrelevant. The objective of this paper is toassert that the biogeosciences offer environmental research networks a numberof opportunities to expand scientific impact and public engagement. Weexplore some of these opportunities with four networks: the InternationalLong-Term Ecological Research Network programs (ILTERs), critical zoneobservatories (CZOs), Earth and ecological observatory networks (EONs),and the FLUXNET program of eddy flux sites. While these networks were foundedand expanded by interdisciplinary scientists, the preponderance of expertise andfunding has gravitated activities of ILTERs and EONs toward ecology andbiology, CZOs toward the Earth sciences and geology, and FLUXNET towardecophysiology and micrometeorology. Our point is not to homogenize networks,nor to diminish disciplinary science. Rather, we argue that by more fullyincorporating the integration of biology and geology in long-termenvironmental research networks, scientists can better leverage networkassets, keep pace with the ever-changing science of the environment, andengage with larger scientific and public audiences. 
    more » « less
  3. A significant challenge physics faculty face teaching introductory labs is engaging students in authentic science practices. Another has been highlighted given the current global pandemic—how to engage students in our laboratory courses while maintaining appropriate social distancing and hygiene standards. We have chosen to answer these challenges by transforming our labs…twice. We discuss the rationale behind the first transformation to a practice-focused curriculum. In March 2020 we needed to transform our labs again, this time to accommodate online learning. This paper discusses two chief questions: “What are we doing to engage students in science practices?” and “How did we make all of this work online?” 
    more » « less
  4. Momsen, Jennifer (Ed.)
    The COVID-19 pandemic caused nearly all colleges and universities to transition in-person courses to an online format. In this study, we explored how the rapid transition to online instruction during the COVID-19 pandemic affected students with disabilities. We interviewed 66 science, technology, engineering, and math (STEM) undergraduates with disabilities at seven large-enrollment institutions during Spring 2020. We probed to what extent students were able to access their existing accommodations, to what extent the online environment required novel accommodations, and what factors prevented students from being properly accommodated in STEM courses. Using inductive coding, we identified that students were unable to access previously established accommodations, such as reduced-distraction testing and note-takers. We also found that the online learning environment presented novel challenges for students with disabilities that may have been lessened with the implementation of accommodations. Finally, we found that instructors making decisions about what accommodations were appropriate for students and disability resource centers neglecting to contact students after the transition to online instruction prevented students from receiving the accommodations that they required in STEM courses during the COVID-19 pandemic. This study illuminates current gaps in the support of students with disabilities and pinpoints ways to make online STEM learning environments more inclusive for students with disabilities. 
    more » « less
  5. Use of structured roles to facilitate cooperative learning is an evidence-based practice that has been shown to improve student performance, attitude, and persistence. The combination of structured roles and activities also helps build students’ process skills including communication and metacognition. While these benefits have been shown in a variety of disciplines, most prior work has focused on in-person, synchronous settings, and few studies have looked at online, synchronous settings. With the ongoing COVID-19 pandemic, we need a better understanding of how cooperative learning takes place online and what differences may exist between online and in-person modalities. This work-in-progress serves to document our development of an observation protocol to help us answer research questions such as the following: Do group members participate equally? Do group members’ contributions match their role? How do groups connect and bond with each other? How do groups seek help? 
    more » « less