skip to main content


Title: SPHR: A Soft Pneumatic Hybrid Robot with extreme shape changing and lifting abilities
Many soft robots are capable of significantly changing their shape, an ability that can offer advantages in many applications. For instance, such a robot can flatten its body to fit under small gaps and expand to move over large obstacles. Further, because these shape changes are usually driven by a pressurized fluid, if they act over a large area, they have the potential to apply large forces to the world. However, when these same shape changes are used for the locomotion of an untethered robot, they tend to result in slow forward movement. Here we present a hybrid soft-rigid elongated-sphere robot that decouples shape change from locomotion. Pairing a compliant, inflatable outer skin, which changes volume by 15x to both fit under and roll over obstacles and can lift objects up to 30 kg, with a wheeled internal carriage, we obtain relatively fast locomotion. A new two-sided controllable adhesive between the internal carriage and the skin enables the carriage to climb vertically inside the skin, allowing the robot to climb external obstacles. We present the design of the robot, simple modeling of its behavior, and experimental testing. Our work advances the area of hybrid soft-rigid robotics by demonstrating how leveraging the strengths of both soft and rigid systems can have quantifiable performance benefits.  more » « less
Award ID(s):
1925373
NSF-PAR ID:
10294799
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the IEEERSJ International Conference on Intelligent Robots and Systems
ISSN:
2153-0858
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of effective reduced order models for soft robots is paving the way toward the development of a new generation of model based techniques, which leverage classic rigid robot control. However, several soft robot features differentiate the soft-bodied case from the rigid-bodied one. First, soft robots are built to work in the environment, so the presence of obstacles in their path should always be explicitly accounted by their control systems. Second, due to the complex kinematics, the actuation of soft robots is mapped to the state space nonlinearly resulting in spaces with different sizes. Moreover, soft robots often include internal constraints and thus actuation is typically limited in the range of action and it is often unidirectional. This paper proposes a control pipeline to tackle the challenge of controlling soft robots with internal constraints in environments with obstacles. We show how the constraints on actuation can be propagated and integrated with geometrical constraints, taking into account physical limits imposed by the presence of obstacles. We present a hierarchical control architecture capable of handling these constraints, with which we are able to regulate the position in space of the tip of a soft robot with the discussed characteristics. 
    more » « less
  2. null (Ed.)
    Continuum robots have high degrees of freedom and the ability to safely move in constrained environments. One class of soft continuum robot is the “vine” robot. This type of robot extends from its tip by everting or unfurling new material, driven by internal body pressure. Most vine robot examples store new body material in a reel at their base, passing it through the core of the robot to the tip, and like many continuum robots, steer by selectively lengthening or shortening one side of the body. While this approach to steering and material storage lends itself to a fully soft device, it has three key limitations: (i) internal friction of material passing through the core of the robot limits its length in tortuous paths, (ii) body buckling as the robot's body material is re-spooled at the base can prevent retraction, and (iii) constant curvature steering limits the robot's poses and object approach angles in a given workspace. This letter presents a hybrid soft-rigid robotic system comprising a soft vine robot body and a rigid, mobile, internal steering-reeling mechanism (SRM); this SRM is equipped with a reel for material storage, a bending actuator for steering, and is capable of actuating the robot at any point along its length. This hybrid configuration increases reach along tortuous paths, allows retraction, and increases the workspace. We describe the motivation for the device, generate its mathematical models, present its methods of operation, and verify experimentally the models we developed and the performance improvements over previous vine robots. 
    more » « less
  3. Soft robots employ flexible and compliant materials to perform adaptive tasks and navigate uncertain environments. However, soft robots are often unable to achieve forces and precision on the order of rigid-bodied robots. In this paper, we propose a new class of mobile soft robots that can reversibly transition between compliant and stiff states without reconfiguration. The robot can passively conform or actively control its shape, stiffen in its current configuration to function as a rigid-bodied robot, then return to its flexible form. The robotic structure consists of passive granular material surrounded by an active membrane. The membrane is composed of interconnected robotic sub-units that can control the packing density of the granular material and exploit jamming behaviors by varying the length of the interconnecting cables. Each robotic sub-unit uses a differential drive system to achieve locomotion and self-reconfigurability. We present the robot design and perform a set of locomotion and object manipulation experiments to characterize the robot's performance in soft and rigid states. We also introduce a simulation framework in which we model the jamming soft robot design and study the scalability of this class of robots. The proposed concept demonstrates the properties of both soft and rigid robots, and has the potential to bridge the gap between the two 
    more » « less
  4. Summary A design and manufacturing method is described for creating a motor tendon–actuated soft foam robot. The method uses a castable, light, and easily compressible open-cell polyurethane foam, producing a structure capable of large (~70% strain) deformations while requiring low torques to operate ( < 0.2 N·m). The soft robot can change shape, by compressing and folding, allowing for complex locomotion with only two actuators. Achievable motions include forward locomotion at 13 mm/s (4.3% of body length per second), turning at 9◦/s, and end-over-end flipping. Hard components, such as motors, are loosely sutured into cavities after molding. This reduces unwanted stiffening of the soft body. This work is the first demonstration of a soft open-cell foam robot locomoting with motor tendon actuators. The manufacturing method is rapid (~30 min per mold), inexpensive (under $3 per robot for the structural foam), and flexible, and will allow a variety of soft foam robotic devices to be produced. 
    more » « less
  5. Soft robots have shown great potential to enable safe interactions with unknown environments due to their inherent compliance and variable stiffness. However, without knowledge of potential contacts, a soft robot could exhibit rigid behaviors in a goal-reaching task and collide into obstacles. In this paper, we introduce a Sliding Mode Augmented by Reactive Transitioning (SMART) controller to detect the contact events, adjust the robot’s desired trajectory, and reject estimated disturbances in a goal reaching task. We employ a sliding mode controller to track the desired trajectory with a nonlinear disturbance observer (NDOB) to estimate the lumped disturbance, and a switching algorithm to adjust the desired robot trajectories. The proposed controller is validated on a pneumatic-driven fabric soft robot whose dynamics is described by a new extended rigid-arm model to fit the actuator design. A stability analysis of the proposed controller is also presented. Experimental results show that, despite modeling uncertainties, the robot can detect obstacles, adjust the reference trajectories to maintain compliance, and recover to track the original desired path once the obstacle is removed. Without force sensors, the proposed model-based controller can adjust the robot’s stiffness based on the estimated disturbance to achieve goal reaching and compliant interaction with unknown obstacles. 
    more » « less