skip to main content


Title: Mineralogy, geochemistry, and genesis of the Chahgaz (XIVA Anomaly) Kiruna-type iron oxide-apatite (IOA) deposit, Bafq district, Central Iran
The Chahgaz iron oxide-apatite (IOA) deposit is one of the main IOA deposits in the Bafq metallogenic province, Central Iran. The Chahgaz mineral deposit is hosted by Early Cambrian felsic to intermediate, altered subvolcanic to effusive rocks that range compositionally from granite to diorite. Geochemical, geochronologic and tectonomagmatic investigations of various host rock types in the Bafq province indicate that mineralization was the product of Early Cambrian active continental margin processes that evolved calc-alkaline felsic igneous rocks followed by formation of diabase dykes in a back-arc basin environment. Magnetite is present in massive magnetite-rich ore bodies and veinlets that cut the massive ore bodies. Detailed macro- and micro-scopic characterization of mineralized samples and host rocks reveals a paragenetic sequence containing three generations of magnetite that are distinguished from one another compositionally and texturally. The massive ores contain apatite in trace amounts, consistent with IOA deposits globally, and locally exhibit textures that are visually similar to lava flow structures, as described for the El Laco IOA deposit, Chile. The ore bodies contain miarolitic cavities that are filled by calcite, hematite and quartz. The host rocks for the Chahgaz deposit have undergone widespread hydrothermal metasomatism including Na-Ca, K-, Mg-, Si-, sericitic, argillic and carbonatization alteration. The compositions of two generations of magnetite, referred to as Mag1 and Mag2, in massive ore overlap compositions reported for igneous and high-temperature magmatic-hydrothermal magnetite. The third generation of magnetite, which is referred to as Mag3 and is present in veinlets cross-cutting the massive magnetite ore bodies, overlaps compositions reported for low to moderate temperature magmatichydrothermal magnetite. Pyrite is present as disseminated grains coeval with Mag1 and micro-fracture filling in the massive magnetite-rich ore bodies. The δ18O values obtained for magnetite from representative samples of massive magnetite Mag1 ore range between 2.18 and 6.32‰ and are consistent with δ18O values reported for igneous and magmatic-hydrothermal magnetite from other deposits in the Bafq district and globally. The δ34S values for pyrite range from 22.54 to 24.94‰ and are consistent with an evaporitic sulfur source; plausibly by magma contamination with evaporitic rocks of the Early Cambrian Volcano-Sedimentary Sequence (ECVSS). The data presented here are consistent with formation of the massive magnetite-rich ore bodies in the Chahgaz IOA deposit by an iron-rich magmatichydrothermal fluid.  more » « less
Award ID(s):
1924142
NSF-PAR ID:
10294821
Author(s) / Creator(s):
Date Published:
Journal Name:
Ore geology reviews
ISSN:
0169-1368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are major sources of Fe, Cu, and Au. Magnetite is the modally dominant and commodity mineral in IOA deposits, whereas magnetite and hematite are predominant in IOCG deposits, with copper sulfides being the primary commodity minerals. It is generally accepted that IOCG deposits formed by hydrothermal processes, but there is a lack of consensus for the source of the ore fluid(s). There are multiple competing hypotheses for the formation of IOA deposits, with models that range from purely magmatic to purely hydrothermal. In the Chilean iron belt, the spatial and temporal association of IOCG and IOA deposits has led to the hypothesis that IOA and IOCG deposits are genetically connected, where S-Cu-Au–poor magnetite-dominated IOA deposits represent the stratigraphically deeper levels of S-Cu-Au–rich magnetite- and hematite-dominated IOCG deposits. Here we report minor element and Fe and O stable isotope abundances for magnetite and H stable isotope abundances for actinolite from the Candelaria IOCG deposit and Quince IOA prospect in the Chilean iron belt. Backscattered electron imaging reveals textures of igneous and magmatic-hydrothermal affinities and the exsolution of Mn-rich ilmenite from magnetite in Quince and deep levels of Candelaria (>500 m below the bottom of the open pit). Trace element concentrations in magnetite systematically increase with depth in both deposits and decrease from core to rim within magnetite grains in shallow samples from Candelaria. These results are consistent with a cooling trend for magnetite growth from deep to shallow levels in both systems. Iron isotope compositions of magnetite range from δ56Fe values of 0.11 ± 0.07 to 0.16 ± 0.05‰ for Quince and between 0.16 ± 0.03 and 0.42 ± 0.04‰ for Candelaria. Oxygen isotope compositions of magnetite range from δ18O values of 2.65 ± 0.07 to 3.33 ± 0.07‰ for Quince and between 1.16 ± 0.07 and 7.80 ± 0.07‰ for Candelaria. For cogenetic actinolite, δD values range from –41.7 ± 2.10 to –39.0 ± 2.10‰ for Quince and from –93.9 ± 2.10 to –54.0 ± 2.10‰ for Candelaria, and δ18O values range between 5.89 ± 0.23 and 6.02 ± 0.23‰ for Quince and between 7.50 ± 0.23 and 7.69 ± 0.23‰ for Candelaria. The paired Fe and O isotope compositions of magnetite and the H isotope signature of actinolite fingerprint a magmatic source reservoir for ore fluids at Candelaria and Quince. Temperature estimates from O isotope thermometry and Fe# of actinolite (Fe# = [molar Fe]/([molar Fe] + [molar Mg])) are consistent with high-temperature mineralization (600°–860°C). The reintegrated composition of primary Ti-rich magnetite is consistent with igneous magnetite and supports magmatic conditions for the formation of magnetite in the Quince prospect and the deep portion of the Candelaria deposit. The trace element variations and zonation in magnetite from shallower levels of Candelaria are consistent with magnetite growth from a cooling magmatic-hydrothermal fluid. The combined chemical and textural data are consistent with a combined igneous and magmatic-hydrothermal origin for Quince and Candelaria, where the deeper portion of Candelaria corresponds to a transitional phase between the shallower IOCG deposit and a deeper IOA system analogous to the Quince IOA prospect, providing evidence for a continuum between both deposit types.

     
    more » « less
  2. null (Ed.)
    The textures of outcrop and near-surface exposures of the massive magnetite orebodies (>90 vol % magnetite) at the Plio-Pleistocene El Laco iron oxide-apatite (IOA) deposit in northern Chile are similar to basaltic lava flows and have compositions that overlap high- and low-temperature hydrothermal magnetite. Existing models— liquid immiscibility and complete metasomatic replacement of andesitic lava flows—attempt to explain the genesis of the orebodies by entirely igneous or entirely hydrothermal processes. Importantly, those models were developed by studying only near-surface and outcrop samples. Here, we present the results of a comprehensive study of samples from outcrop and drill core that require a new model for the evolution of the El Laco ore deposit. Backscattered electron (BSE) imaging, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to investigate the textural and compositional variability of magnetite and apatite from surface and drill core samples in order to obtain a holistic understanding of textures and compositions laterally and vertically through the orebodies. Magnetite was analyzed from 39 surface samples from five orebodies (Cristales Grandes, Rodados Negros, San Vicente Alto, Laco Norte, and Laco Sur) and 47 drill core samples from three orebodies (Laco Norte, Laco Sur, and Extensión Laco Sur). The geochemistry of apatite from eight surface samples from three orebodies (Cristales Grandes, Rodados Negros, and Laco Sur) was investigated. Minor and trace element compositions of magnetite in these samples are similar to magnetite from igneous rocks and magmatic-hydrothermal systems. Magnetite grains from deeper zones of the orebodies contain >1 wt % titanium, as well as ilmenite oxyexsolution lamellae and interstitial ilmenite. The ilmenite oxyexsolution lamellae, interstitial ilmenite, and igneous-like trace element concentrations in titanomagnetite from the deeper parts of the orebodies are consistent with original crystallization of titanomagnetite from silicate melt or high-temperature magmatic-hydrothermal fluid. The systematic decrease of trace element concentrations in magnetite from intermediate to shallow depths is consistent with progressive growth of magnetite from a cooling magmatic-hydrothermal fluid. Apatite grains from surface outcrops are F rich (typically >3 wt %) and have compositions that overlap igneous and magmatic-hydrothermal apatite. Magnetite and fluorapatite grains contain mineral inclusions (e.g., monazite and thorite) that evince syn- or postmineralization metasomatic alteration. Magnetite grains commonly meet at triple junctions, which preserve evidence for reequilibration of the ore minerals with hydrothermal fluid during or after mineralization. The data presented here are consistent with genesis of the El Laco orebodies via shallow emplacement and eruption of magnetite-bearing magmatic-hydrothermal fluid suspensions that were mobilized by decompression- induced collapse of the volcanic edifice. The ore-forming magnetite-fluid suspension would have rheological properties similar to basaltic lava flows, which explains the textures and presence of cavities and gas escape tubes in surface outcrops. 
    more » « less
  3. null (Ed.)
    Magnetite is the most important iron ore in iron oxide-apatite (IOA) deposits which represent the Cu-poor endmember of the iron oxide-copper–gold (IOCG) clan. Magnetite chemistry has been used as a petrogenetic indicator to identify the geological environment of ore formation and as a fingerprint of the source reservoir of iron. In this study, we present new textural and microanalytical EPMA and LA-ICP-MS data of magnetite from Carmen, Fresia, Mariela and El Romeral IOA deposits located in the Cretaceous Coastal Cordillera of northern Chile. We also provide a comprehensive summary and discussion of magnetite geochemistry from Andean IOAs including Los Colorados, Cerro Negro Norte, El Romeral (Chilean Iron Belt) and the Pliocene El Laco IOA deposit located in the Central Volcanic Zone of the Chilean Andes. Microtextures coupled with geochemical data were used to define and characterize the occurrence of different magnetite types. Magnetite exhibits a variety of textural features including oscillatory zoning, colloform banding, re-equilibration textures, exsolution lamellae and symplectites. The magmatic vs. hydrothermal origin of the different magnetite types and the evolution of IOA deposits can be assessed using diagrams based on compatible trace elements. However, magnetite is very susceptible to hydrothermal alteration and to both textural and compositional re-equilibration during magmatic and superimposed hydrothermal events. Based on the data presented here, we conclude that V and Ga are possibly the most reliable compatible elements in magnetite to trace ore-forming processes in the Andean IOA deposits. Magnetite chemistry reveals different conditions/events of formation for each IOA deposit ranging from high-temperature, low-oxygen fugacity (ƒO2), purely magmatic (> 600 °C) conditions; to lower temperature and higher ƒO2 magmatic-hydrothermal (300–600 °C) to low-temperature hydrothermal (< 200–300 °C) conditions. Specifically, a continuous transition from high-temperature, low- ƒO2 conditions in the deepest portions of the deposits to low-temperature, relatively higher ƒO2 conditions towards surface are described for magnetite from El Laco. The new and compiled magnetite data from IOA deposits from the Chilean Iron Belt and El Laco are consistent with a transition from magmatic to hydrothermal conditions. The flotation model plausibly explains such features, which result from the crystallization of magnetite microlites from a silicate melt, nucleation and coalescence of aqueous fluid bubbles on magnetite surfaces, followed by ascent of a fluid-magnetite suspension along reactivated transtensional faults or through fissures formed during the collapse of the volcanic structure (El Laco). The decompression of the coalesced fluid-magnetite aggregates during ascent promotes the continued growth of magnetite microlites from the Fe-rich magmatic-hydrothermal fluid. As with any general genetic model, the flotation model allows variation and the definition of different styles or subtypes of IOA mineralization. The deeper, intrusive-like Los Colorados deposit shows contrasting features when compared with the Cerro Negro Norte hydrothermal type, the pegmatitic apatite-rich deposits of Carmen, Fresia and Mariela, and the shallow, subaerial deposits of El Laco. These apparent differences depend fundamentally on the depth of formation, the presence of structures and faults that trigger decompression, the composition of the host rocks, and the source and flux rate of hydrothermal fluids. 
    more » « less
  4. Kiruna-type iron oxide−apatite (IOA) deposits constitute an important source of iron and phosphorus, and potentially of rare earth elements (REE). However, the origin of IOA deposits is still a matter of debate with models that range from a purely magmatic origin by liquid immiscibility to replacement of host rocks by hydrothermal fluids from different sources. In order to better constrain the origin of Andean IOA deposits, we focused on the Cretaceous Cerro Negro Norte deposit located in the Chilean Iron Belt, northern Chile. The Cerro Negro Norte magnetite ore is hosted in andesitic rocks and is spatially and genetically associated with a diorite intrusion. Our results show that the deposit is characterized by three main mineralization/ alteration episodes: an early Fe–oxide event with magnetite and actinolite followed by four stages that comprise the main hydrothermal event (hydrothermal magnetite + actinolite; calcic–sodic alteration + sulfides; quartz–tourmaline and propylitic alteration) and a minor supergene event. Based on textural and chemical characteristics, four different types of magnetite are recognized at Cerro Negro Norte: type I, represented by high-temperature (~ 500 °C) magnetite cores with amphibole, pyroxene, and minor Ti–Fe oxide inclusions; type II, an inclusion-free magnetite, usually surrounding type I magnetite cores; type III corresponds to an inclusion-free magnetite with chemical zoning formed under moderate temperatures; and type IV magnetite contains abundant inclusions and is related to low-temperature (~ 250 °C) hydrothermal veinlets. Electron probe and laser ablation ICP-MS analyses of the four magnetite types show that the incorporation of Al, Mn, Ti, and V into the magnetite structure is controlled by temperature. Vanadium and Ga concentrations are relatively constant within each magnetite type, but are statistically different among magnetite types, suggesting that both elements could be used to discriminate between magmatic and hydrothermal magnetite. However, our results show that the use of elemental discrimination diagrams should be coupled with detailed textural studies in order to identify superimposed metasomatic events and evaluate the impact of inclusions on the interpretation of microanalytical data. The presence of a distinct textural and chemical variation between magnetite types in Cerro Negro Norte is explained by a transition from high- to low-temperature magmatic-hydrothermal conditions. The microanalytical data of magnetite presented here, coupled with new δ34S data for pyrite (− 0.5 to + 4.3‰) andU–Pb ages of the diorite (129.6 ± 1.0 Ma), are indicative of a genetic connection between the diorite intrusion and the magnetite mineralization, supporting a magmatic-hydrothermal flotation model to explain the origin of Kiruna-type deposits in the Coastal Cordillera of northern Chile. 
    more » « less
  5. Iron oxide copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe oxides, and may contain Au, Ag, Co, rare earth elements (REEs), U, and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the hydrothermal unit and manto orebodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three types of magnetite: magnetite with inclusions (type I) is only found in the manto, is the richest in trace elements, and crystallized between 459° and 707°C; type Dark (D) has no visible inclusions and formed at around 543°C; and type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443°C. Temperatures were estimated using the Mg content in magnetite. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n = 9), an average δ18O ± 2σ value of 2.19 ± 0.45‰ (n = 9), and D’17O values that range between –0.075 and –0.047‰. Sulfide separates yielded δ65Cu values that range from –0.32 to –0.09‰. The trace element compositions and textures of magnetite, along with temperature estimations for magnetite crystallization, are consistent with the manto magnetite belonging to an iron oxide-apatite (IOA) style mineralization that was overprinted by a younger, structurally controlled IOCG event that formed the hydrothermal unit orebody. Altogether, the stable isotopic data fingerprint a magmatic-hydrothermal source for the ore fluids carrying the Fe and Cu at Mina Justa and preclude significant input from meteoric water and basinal brines. 
    more » « less