skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Close substellar-mass companions in stellar wide binaries: Discovery and characterization with APOGEE and Gaia DR2
Abstract We present a search for close, unresolved companions in a subset of spatially resolved Gaia wide binaries containing main-sequence stars within 200 pc of the Sun, utilizing the APOGEE–Gaia Wide Binary Catalog. A catalog of 37 wide binaries was created by selecting pairs of stars with nearly identical Gaia positions, parallaxes, and proper motions, and then confirming candidates to be gravitationally-bound pairs using APOGEE radial velocities. We identify close, unresolved stellar and substellar candidate companions in these multiple systems using (1) the Gaia binary main-sequence and (2) observed periodic radial velocity variations in APOGEE measurements due to the influence of a close substellar-mass companion. The studied wide binary pairs reveal a total of four stellar-mass close companions in four different wide binaries, and four substellar-mass close companion candidates in two wide binaries. The latter are therefore quadruple systems, with one substellar mass companion orbiting each wide binary component in an S-type orbit. Taken at face value, these candidate systems represent an enhancement of an order of magnitude over the expected occurrence rate of ∼2 per cent of stars having substellar companions >2 MJup within ∼100 day orbits; we discuss implications and possible explanations for this result. Finally, we compare chemical differences between the components of the wide binaries and the components of the candidate higher-order systems and find that any chemical influence or correlation due to the presence of close companions to wide binary stars is not discernible.  more » « less
Award ID(s):
1909022 1801940
PAR ID:
10294860
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We created the APOGEE-GALEX-Gaia catalog to study white dwarf (WD) binaries. This database aims to create a minimally biased sample of WD binary systems identified from a combination of GALEX, Gaia, and APOGEE data to increase the number of WD binaries with orbital parameters and chemical compositions. We identify 3414 sources as WD binary candidates, with nondegenerate companions of spectral types between F and M, including main-sequence stars, main-sequence binaries, subgiants, sub-subgiants, red giants, and red clump stars. Among our findings are (a) a total of 1806 systems having inferred WD radii R < 25 R ⊕ , which constitute a more reliable group of WD binary candidates within the main sample; (b) a difference in the metallicity distribution function between WD binary candidates and the control sample of most luminous giants ( M H < −3.0); (c) the existence of a population of sub-subgiants with WD companions; (d) evidence for shorter periods in binaries that contain WDs compared to those that do not, as shown by the cumulative distributions of APOGEE radial velocity shifts; (e) evidence for systemic orbital evolution in a sample of 252 WD binaries with orbital periods, based on differences in the period distribution between systems with red clump, main-sequence binary, and sub-subgiant companions and systems with main-sequence or red giant companions; and (f) evidence for chemical enrichment during common envelope (CE) evolution, shown by lower metallicities in wide WD binary candidates ( P > 100 days) compared to post-CE ( P < 100 days) WD binary candidates. 
    more » « less
  2. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution. 
    more » « less
  3. The recent Gaia Focused Product Release contains radial velocity time-series for more than 9,000 Gaia long-period photometric variables. Here we search for binary systems with large radial velocity amplitudes to identify candidates with massive, unseen companions. Eight targets have binary mass function f ( M ) > 1 M , three of which are eclipsing binaries. The remaining five show evidence of ellipsoidal modulations. We fit spectroscopic orbit models to the Gaia radial velocities, and fit the spectral energy distributions of three targets. For the two systems most likely to host dark companions, J0946 and J1640, we use PHOEBE to fit the ASAS-SN light curves and Gaia radial velocities. The derived companion masses are > 3 M , but the high Galactic dust extinctions towards these objects limit our ability to rule out main sequence companions or subgiants hotter than the photometric primaries. These systems are similar to other stellar-mass black hole impostors, notably the Unicorn (V723 Mon) and the Giraffe (2M04123153+6738486). While it is possible that J1640 and J0946 are similar examples of stripped giant star binaries, high-resolution spectra can be used to determine the nature of their companions. 
    more » « less
  4. Precise and accurate mass and radius measurements of evolved stars are crucial to calibrating stellar models. Stars in detached eclipsing binaries (EBs) are excellent potential calibrators because their stellar parameters can be measured with fractional uncertainties of a few percent, independent of stellar models. The All-Sky Automated Survey for Supernovae (ASAS-SN) has identified tens of thousands of EBs, >35,000 of which were included in the ASAS-SN eclipsing binaries catalog. Here, we select eight EBs from this sample that contain giants based on their Gaia colors and absolute magnitudes. We use LBT/PEPSI, APF, and CHIRON to obtain multi-epoch spectra of these binaries and measure their radial velocities using two-dimensional cross-correlation methods. We simultaneously fit the ASAS-SN light curves and the radial velocities with PHOEBE to derive accurate and precise masses and radii with fractional uncertainties of 3 % . For four systems, we also include Transiting Exoplanet Survey Satellite (TESS) light curves in our PHOEBE models, which significantly improves the radius determinations. In seven of our systems, both components have evolved off of the main sequence, and one system has a giant star component with a main sequence, Sun-like companion. Finally, we compare our mass and radius measurements to single-star evolutionary tracks and distinguish between systems that are first ascent red giant branch stars and those that are likely core helium-burning stars. 
    more » « less
  5. ABSTRACT For stars with unresolved companions, motions of the centre of light and that of mass decouple, causing a single-source astrometric model to perform poorly. We show that such stars can be easily detected with the reduced χ2 statistic, or renormalized unit weight error (RUWE), provided as part of Gaia DR2. We convert RUWE into the amplitude of the image centroid wobble, which, if scaled by the source distance, is proportional to the physical separation between companions (for periods up to several years). We test this idea on a sample of known spectroscopic binaries and demonstrate that the amplitude of the centroid perturbation scales with the binary period and the mass ratio as expected. We apply this technique to the Gaia DR2 data and show how the binary fraction evolves across the Hertzsprung–Russell diagram. The observed incidence of unresolved companions is high for massive young stars and drops steadily with stellar mass, reaching its lowest levels for white dwarfs. We highlight the elevated binary fraction for the nearby blue stragglers and blue horizontal branch stars. We also illustrate how unresolved hierarchical triples inflate the relative velocity signal in wide binaries. Finally, we point out a hint of evidence for the existence of additional companions to the hosts of extrasolar hot Jupiters. 
    more » « less