CSAwesome is a new approved curriculum and professional development (PD) provider for the Advanced Placement (AP) Computer Science (CS) A high school course. AP courses are taken by secondary (typically ages 14-19) students for college placement and/or credit. CSAwesome's free curriculum and teacher resources were developed in 2019 by adapting the CSA Java Review ebook on the open-source Runestone platform. The goals of CSAwesome are to broaden participation in the AP CSA course and to support new-to-CS students and teachers as they transition from the AP Computer Science Principles (CSP) course to the AP CSA course by using inclusive teaching practices and curriculum design. The AP CSP course is equivalent to a first course for non-majors at the college level, while the AP CSA course is equivalent to a first course for majors. Currently, AP CSA attracts a much less diverse student body than AP CSP. This new curriculum supports student engagement and scaffolded learning through an interactive ebook with embedded executable and modifiable code (Active Code), a variety of practice types with immediate feedback, and adaptable mixed-up code (Parsons) problems. Collaborative learning is encouraged through pair programming and groupwork. Our pilot Professional Development (PD) incorporates inclusive teaching strategies andmore »
Developing Empathy and Persistence through Professional Development in New to CSA Teachers
To meet the rising demand for computer science (CS) courses, K-12 educators need to
be prepared to teach introductory concepts and skills in courses such as Computer
Science Principles (CSP), which takes a breadth-first approach to CS and includes
topics beyond programming such as data, impacts of computing, and networks. Educators
are now also being asked to teach more advanced concepts in courses such as the College
Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to
engage a broad range of learners and support their success. Unlike CSP, which is attracting
more underrepresented students to computing as it was designed, CSA continues to enroll
mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020].
In order to expand CS education opportunities, it is crucial that students have an
engaging experience in CSA similar to CSP. Well-designed differentiated professional
development (PD) that focuses on content and pedagogy is necessary to meet individual
teacher needs, to successfully build teacher skills and confidence to teach CSA, and
to improve engagement with students [Darling-Hammond 2017]. It is critical that as
more CS opportunities and courses are developed, teachers more »
- Award ID(s):
- 2031361
- Publication Date:
- NSF-PAR ID:
- 10294918
- Journal Name:
- ICER 2021: Proceedings of the 17th ACM Conference on International Computing Education Research
- Page Range or eLocation-ID:
- 443 to 443
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Preparing Pre-Service Teacher Candidates for the Praxis Exam: An Innovative Model of Blended SupportThe expansion of K-12 computer science (CS) has driven a dramatic need for educators who are trained in CS content and pedagogy [1]. This poster describes our effort to train teacher candidates (i.e., pre-service teachers who are students seeking degrees within a College of Education), who are specializing in secondary mathematics education, to be future CS educators. We specifically describe our collaboration to provide a blended preparatory six-week training for the ETS CS Praxis exam (5652), assisting our pre-service students in satisfying the CS certification requirements in our state before they graduate and begin their professional teaching career. Given the unique challenges of pre-service CS teacher preparation [2], blended models, which combine both in-person and online instruction, are an effective approach to building a pre-service program. Within our pre-service CS program, students first complete a two-course pathway that prepares them in AP CSP content and pedagogy experiences, including observations in local AP CSP classrooms [3]. After completing the two courses, our students participate in the blended version of the WeTeach_CS Praxis preparation course to achieve certification. The in-person support provided by the blended model contributed significantly to certification success in this project. With a cut-score of 149 for the Praxismore »
-
The surge of interest in K-12 computer science (CS) over the past decade has led to a deep need for a corresponding expansion of trained teachers. The primary focus of most K-12 CS teacher professional development has been for current in-service teachers who have little background in CS. To raise the importance of CS within Colleges of Education, we believe that new pathways and experiences are needed for pre-service Education majors to learn more about authentic CS topics and pedagogy. This experience report summarizes our efforts over the past two years to prepare Secondary Math Education (SEMA) majors to teach AP CS Principles (AP CSP). Our approach consists of the following curricular activities: 1) a two-course sequence, with the first course mapping to the content topics of the AP CSP Curriculum Framework, and the second course consisting of a reflection of CS methods and pedagogy, including opportunities for SEMA students to develop and present their own AP CSP lesson plans; 2) opportunities for SEMA students to observe AP CSP classrooms in local high schools through our partnership with experienced AP CSP teachers; 3) summer participation in a College Board AP Summer Institute for AP CSP, and 4) a six-week ETSmore »
-
Concurrent enrollment enables high school teachers approved by a partnering college or university to teach college-level coursework to their students. The collaborative research-practice partnership project CS-through-CE examines if and how concurrent enrollment (CE) programs can effectively broaden participation in computing for secondary students. In the CS-through-CE project two participating higher education institutions - Capital Community College (CCC) in Hartford, CT, and Southwest Minnesota State University (SMSU) in Marshall, MN - collaborated with the Mobile Computer Science Principles (CSP) team to train secondary teachers to teach the Mobile CSP course, and then offer the Mobile CSP course as a CE course. In this experience paper, faculty from CCC and SMSU detail their experiences recruiting secondary partners to teach Mobile CSP as a CE course, including the barriers and challenges encountered and the strategies identified for overcoming them. Additionally, participating secondary instructors from Hartford Trinity Magnet College Academy in Hartford, CT and Northeast Range School in Babbit, MN detail their experiences teaching Mobile CSP as a CE course in their high schools. They share their experiences teaching Mobile CSP as a CE course, contrast this experience to teaching the course in an Advanced Placement (AP) format, and detail the benefits they seemore »
-
In 2020, over 116,000 students took the Advanced Placement Computer Science Principles (AP CSP) Exam. Although Black female students have participated in AP CSP at higher rates than for the AP CSA course, their representation is still disproportionately lower than the school population of Black females. In this Experience Report, we present the early results of an NSF-sponsored effort that provides an AP CSP preparatory experience and CS career awareness to Black female students from rural, urban, and suburban communities in the state of Alabama. At the project’s core is a peer-learning community (PLC) facilitated by Black female teachers with deep knowledge of AP CSP. An intensive summer experience prepares students for the AP CSP course through culturally-responsive, project-based learning experiences designed to connect advanced computing concepts to the students’ personal lives and career aspirations. Interactions and support continue throughout the academic year to facilitate AP exam readiness. Online interactions among the PLC members serve to mitigate the barriers that young women of color typically encounter when pursuing CS education, increasing their persistence and success in CS. We examined whether students’ project participation enhances self-efficacy and perceived competency in CS, increases positive attitudes, awareness, and desire to pursue CS studiesmore »