skip to main content


Title: Developing Empathy and Persistence through Professional Development in New to CSA Teachers
To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies.  more » « less
Award ID(s):
2031361
NSF-PAR ID:
10294918
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ICER 2021: Proceedings of the 17th ACM Conference on International Computing Education Research
Page Range / eLocation ID:
443 to 443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    CSAwesome is a new approved curriculum and professional development (PD) provider for the Advanced Placement (AP) Computer Science (CS) A high school course. AP courses are taken by secondary (typically ages 14-19) students for college placement and/or credit. CSAwesome's free curriculum and teacher resources were developed in 2019 by adapting the CSA Java Review ebook on the open-source Runestone platform. The goals of CSAwesome are to broaden participation in the AP CSA course and to support new-to-CS students and teachers as they transition from the AP Computer Science Principles (CSP) course to the AP CSA course by using inclusive teaching practices and curriculum design. The AP CSP course is equivalent to a first course for non-majors at the college level, while the AP CSA course is equivalent to a first course for majors. Currently, AP CSA attracts a much less diverse student body than AP CSP. This new curriculum supports student engagement and scaffolded learning through an interactive ebook with embedded executable and modifiable code (Active Code), a variety of practice types with immediate feedback, and adaptable mixed-up code (Parsons) problems. Collaborative learning is encouraged through pair programming and groupwork. Our pilot Professional Development (PD) incorporates inclusive teaching strategies and active recruitment with the goal of broadening participation in CSA. This paper presents the design of the CSAwesome curriculum and teacher professional development and initial results from the curriculum use and pilot PD during the first year of CSAwesome. 
    more » « less
  2. null (Ed.)
    The expansion of K-12 computer science (CS) has driven a dramatic need for educators who are trained in CS content and pedagogy [1]. This poster describes our effort to train teacher candidates (i.e., pre-service teachers who are students seeking degrees within a College of Education), who are specializing in secondary mathematics education, to be future CS educators. We specifically describe our collaboration to provide a blended preparatory six-week training for the ETS CS Praxis exam (5652), assisting our pre-service students in satisfying the CS certification requirements in our state before they graduate and begin their professional teaching career. Given the unique challenges of pre-service CS teacher preparation [2], blended models, which combine both in-person and online instruction, are an effective approach to building a pre-service program. Within our pre-service CS program, students first complete a two-course pathway that prepares them in AP CSP content and pedagogy experiences, including observations in local AP CSP classrooms [3]. After completing the two courses, our students participate in the blended version of the WeTeach_CS Praxis preparation course to achieve certification. The in-person support provided by the blended model contributed significantly to certification success in this project. With a cut-score of 149 for the Praxis exam, all 11 of our pre-service students who completed the course received a passing score (including one student with a perfect score of 200, and another student with a 195); the average score for our pre-service students was 175. An additional 11 in-service teachers, with diverse backgrounds in CS content knowledge, also participated in the blended Praxis preparation course, with an average score of 166. Given the unique challenges of pre-service CS teacher preparation, university pre-service CS teacher programs should look to innovative models of teacher support developed by in-service programs to make substantial gains in CS teacher certification. Incorporating an asynchronous online course that allows teachers with a wide range of prior experience in CS to learn at their own pace with in-person coursework and support appears to be a viable model for assisting non-CS major teacher candidates in achieving a CS certification. With the blended model, even teachers with no background knowledge in CS were successful. Within our pre-service CS program, students first complete a two-course pathway that prepares them in AP CSP content and pedagogy experiences, including observations in local AP CSP classrooms [3]. After completing the two courses, our students participate in the blended version of the WeTeach_CS Praxis preparation course to achieve certification. The in-person support provided by the blended model contributed significantly to certification success in this project. With a cut-score of 149 for the Praxis exam, all 11 of our pre-service students who completed the course received a passing score (including one student with a perfect score of 200, and another student with a 195); the average score for our pre-service students was 175. An additional 11 in-service teachers, with diverse backgrounds in CS content knowledge, also participated in the blended Praxis preparation course, with an average score of 166. Incorporating an asynchronous online course that allows teachers with a wide range of prior experience in CS to learn at their own pace with in-person coursework and support appears to be a viable model for assisting non-CS major teacher candidates in achieving a CS certification. With the blended model, even teachers with no background knowledge in CS were successful. 
    more » « less
  3. null (Ed.)
    Concurrent enrollment enables high school teachers approved by a partnering college or university to teach college-level coursework to their students. The collaborative research-practice partnership project CS-through-CE examines if and how concurrent enrollment (CE) programs can effectively broaden participation in computing for secondary students. In the CS-through-CE project two participating higher education institutions - Capital Community College (CCC) in Hartford, CT, and Southwest Minnesota State University (SMSU) in Marshall, MN - collaborated with the Mobile Computer Science Principles (CSP) team to train secondary teachers to teach the Mobile CSP course, and then offer the Mobile CSP course as a CE course. In this experience paper, faculty from CCC and SMSU detail their experiences recruiting secondary partners to teach Mobile CSP as a CE course, including the barriers and challenges encountered and the strategies identified for overcoming them. Additionally, participating secondary instructors from Hartford Trinity Magnet College Academy in Hartford, CT and Northeast Range School in Babbit, MN detail their experiences teaching Mobile CSP as a CE course in their high schools. They share their experiences teaching Mobile CSP as a CE course, contrast this experience to teaching the course in an Advanced Placement (AP) format, and detail the benefits they see in each modality. The experiences of the college faculty and secondary instructors in this paper are informative for any secondary or post-secondary educator interested in cultivating or expanding pathways in CS through concurrent enrollment. 
    more » « less
  4. null (Ed.)
    The surge of interest in K-12 computer science (CS) over the past decade has led to a deep need for a corresponding expansion of trained teachers. The primary focus of most K-12 CS teacher professional development has been for current in-service teachers who have little background in CS. To raise the importance of CS within Colleges of Education, we believe that new pathways and experiences are needed for pre-service Education majors to learn more about authentic CS topics and pedagogy. This experience report summarizes our efforts over the past two years to prepare Secondary Math Education (SEMA) majors to teach AP CS Principles (AP CSP). Our approach consists of the following curricular activities: 1) a two-course sequence, with the first course mapping to the content topics of the AP CSP Curriculum Framework, and the second course consisting of a reflection of CS methods and pedagogy, including opportunities for SEMA students to develop and present their own AP CSP lesson plans; 2) opportunities for SEMA students to observe AP CSP classrooms in local high schools through our partnership with experienced AP CSP teachers; 3) summer participation in a College Board AP Summer Institute for AP CSP, and 4) a six-week ETS Praxis CS preparation modules-based course, offered to both pre-service SEMA students and in-service teachers. We summarize our lessons learned and present results that suggest our approach is preparing pre-service students with pedagogical and content knowledge that meets or exceeds current in-service training models (including an analysis of recent Praxis results for CS certification in our state). 
    more » « less
  5. Effective and equitable CS teaching in classrooms is contingent on teachers' high-levels of self-efficacy in CS as well as a robust understanding of equity issues in CS classrooms. To this end, our study examined the influence of a professional development (PD) course, Teaching Exploring Computer Science (TECS), on promoting teacher self-efficacy and equity awareness in CS education. This nine-week PD was offered in a hybrid format, delivering on-line and face-to-face classes to high school teachers across various disciplines who served under-represented students. The participants completed a selfefficacy survey focusing on their ability to teach ECS, both before and after the course. Results showed that teachers' selfefficacy in the content knowledge and pedagogical knowledge of ECS significantly increased as a result of taking the course. We also evaluated teacher's understanding of the equity issues by conducting a content analysis of their reflection essays written at the end of the course. Four major themes emerged from the content analysis, highlighting the impact of equitable practices on CS participation. This research demonstrates the role of a professional development course in promoting teachers' self-efficacy beliefs in teaching CS and their understanding of the equity issues and presents tools for assessing teachers' development in these areas. 
    more » « less