skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NestGPU: nested query processing on GPU
Nested queries are commonly used to express complex use-cases by connecting the output of a subquery as an input to the outer query block. However, their execution is highly time-consuming. Researchers have proposed various algorithms and techniques that unnest subqueries to improve performance. Since this is a customized approach that needs high algorithmic and engineering efforts, it is largely not an open feature in most existing database systems.Our approach is general-purpose and GPU-acceleration based, aiming for high performance at a minimum development cost. We look into the major differences between nested and unnested query structures to identify their merits and limits for GPU processing. Furthermore, we focus on the nested approach that is algorithmically simple and rich in parallels, in relatively low space complexity, and generic in program structure. We create a new code generation framework that best fits GPU for the nested method. We also make several critical system optimizations including massive parallel scanning with indexing, effective vectorization to optimize join operations, exploiting cache locality for loops and efficient GPU memory management. We have implemented the proposed solutions in NestGPU, a GPU-based column-store database system that is GPU device independent. We have extensively evaluated and tested the system to show the effectiveness of our proposed methods.  more » « less
Award ID(s):
1718450
PAR ID:
10294952
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 IEEE 37th International Conference on Data Engineering
Page Range / eLocation ID:
1008-1019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nested queries are commonly used to express complex use-cases by connecting the output of a subquery as an input to the outer query block. However, their execution is highly time consuming. Researchers have proposed various algorithms and techniques that unnest subqueries to improve performance. Since this is a customized approach that needs high algorithmic and engineering efforts, it is largely not an open feature in most existing database systems. Our approach is general-purpose and GPU-acceleration based, aiming for high performance at a minimum development cost. We look into the major differences between nested and unnested query structures to identify their merits and limits for GPU processing. Furthermore, we focus on the nested approach that is algorithmically simple and rich in parallels, in relatively low space complexity, and generic in program structure. We create a new code generation framework that best fits GPU for the nested method. We also make several critical system optimizations including massive parallel scanning with indexing, effective vectorization to optimize join operations, exploiting cache locality for loops and efficient GPU memory management. We have implemented the proposed solutions in NestGPU, a GPU-based column-store database system that is GPU device independent. We have extensively evaluated and tested the system to show the effectiveness of our proposed methods. 
    more » « less
  2. The emergence of novel hardware accelerators has powered the tremendous growth of machine learning in recent years. These accelerators deliver incomparable performance gains in processing high-volume matrix operators, particularly matrix multiplication, a core component of neural network training and inference. In this work, we explored opportunities of accelerating database systems using NVIDIA’s Tensor Core Units (TCUs). We present TCUDB, a TCU-accelerated query engine processing a set of query operators including natural joins and group-by aggregates as matrix operators within TCUs. Matrix multiplication was considered inefficient in the past; however, this strategy has remained largely unexplored in conventional GPU-based databases, which primarily rely on vector or scalar processing. We demonstrate the significant performance gain of TCUDB in a range of real-world applications including entity matching, graph query processing, and matrix-based data analytics. TCUDB achieves up to 288× speedup compared to a baseline GPU-based query engine. 
    more » « less
  3. Estimating the output size of a query is a fundamental yet longstanding problem in database query processing. Traditional cardinality estimators used by database systems can routinely underestimate the true output size by orders of magnitude, which leads to significant system performance penalty. Recently, upper bounds have been proposed that are based on information inequalities and incorporate sizes and max-degrees from input relations, yet their main benefit is limited to cyclic queries, because they degenerate to rather trivial formulas on acyclic queries. We introduce a significant extension of the upper bounds, by incorporating lp-norms of the degree sequences of join attributes. Our bounds are significantly lower than previously known bounds, even when applied to acyclic queries. These bounds are also based on information theory, they come with a matching query evaluation algorithm, are computable in exponential time in the query size, and are provably tight when all degrees are ''simple''. 
    more » « less
  4. There have been many decades of work on optimizing query processing in database management systems. Recently, modern machine learning (ML), and specifically reinforcement learning (RL), has gained increased attention as a means to develop a query optimizer (QO). In this work, we take a closer look at two recent state-of-the-art (SOTA) RL-based QO methods to better understand their behavior. We find that these RL-based methods do not generalize as well as it seems at first glance. Thus, we ask a simple question:How do SOTA RL-based QOs compare to a simple, modern, adaptive query processing approach?To answer this question, we choose two simple adaptive query processing techniques and implemented them in PostgreSQL. The first adapts an individual join operation on-the-fly and switches between a Nested Loop Join algorithm and a Hash Join algorithm to avoid sub-optimal join algorithm decisions. The second is a technique calledLookahead Information Passing(LIP), in which adaptive semijoin techniques are used to make a pipeline of join operations execute efficiently. To our surprise, we find that this simple adaptive query processing approach is not only competitive to the SOTA RL-based approaches but, in some cases, outperforms the RL-based approaches. The adaptive approach is also appealing because it does not require an expensive training step, and it is fully interpretable compared to the RL-based QO approaches. Further, the adaptive method works across complex query constructs that RL-based QO methods currently cannot optimize. 
    more » « less
  5. We present Breadcrumb, a system that aids developers in debugging queries through query-based explanations for missing answers. Given as input a query and an expected, but missing, query result, Breadcrumb identifies operators in the input query that are responsible for the failure to derive the missing answer. These operators form explanations that guide developers who can then focus their debugging efforts on fixing these parts of the query. Breadcrumb is implemented on top of Apache Spark. Our approach is the first that scales to big data dimensions and is capable of finding explanations for common errors in queries over nested and de-normalized data, e.g., errors based on misinterpreting schema semantics. 
    more » « less