- Publication Date:
- NSF-PAR ID:
- 10295084
- Journal Name:
- ACS nano
- Volume:
- 14
- Issue:
- 10
- Page Range or eLocation-ID:
- 13548–13556
- ISSN:
- 1936-0851
- Sponsoring Org:
- National Science Foundation
More Like this
-
We report a synthesis procedure for dodecanethiol capped wurtzite ZnO nanocrystals with an average diameter of 4 nm that are monodisperse, highly soluble, and shelf-stable for many months. Compared to previous ZnO ink recipes, we demonstrate improved particle solubility and excellent ink stability, resulting in ZnO nanocrystal inks that are optimized for printed electronics applications. The ZnO nanocrystal solution exhibits an absorption peak at 341 nm (3.63 eV), which represents a blue-shift of approximately 0.3 eV from the bulk ZnO bandgap (∼3.3 eV). This blue shift is consistent with previously reported models for an increased bandgap due to quantum confinement. We used variable-angle spectroscopic ellipsometry (VASE) to determine the optical properties of solution-processed thin films of ZnO nanocrystals, which provides valuable insight into the changes in film composition and morphology that occur during thermal annealing treatments ranging from 150–300 °C. The ZnO nanocrystals maintain their quantum confinement when deposited into a thin film, and the degree of quantum confinement is gradually reduced as the thermal annealing temperature increases. Using infrared absorption measurements (FTIR) and X-ray photoelectron spectroscopy (XPS), we show that the dodecanethiol ligands are removed from the ZnO films during annealing, resulting in a high-purity semiconductor film with verymore »
-
As surface ligands play a critical role in the colloidal stability and optoelectronic properties of semiconductor nanocrystals, we used solution NMR experiments to investigate the surface coordination chemistry of Ge nanocrystals synthesized by a microwave-assisted reduction of GeI 2 in oleylamine. The as-synthesized Ge nanocrystals are coordinated to a fraction of strongly bound oleylamide ligands (with covalent X-type Ge–NHR bonds) and a fraction of more weakly bound (or physisorbed) oleylamine, which readily exchanges with free oleylamine in solution. The fraction of strongly bound oleylamide ligands increases with increasing synthesis temperature, which also correlates with better colloidal stability. Thiol and carboxylic acid ligands bind to the Ge nanocrystal surface only upon heating, suggesting a high kinetic barrier to surface binding. These incoming ligands do not displace native oleylamide ligands but instead appear to coordinate to open surface sites, confirming that the as-prepared nanocrystals are not fully passivated. These findings will allow for a better understanding of the surface chemistry of main group nanocrystals and the conditions necessary for ligand exchange to ultimately maximize their functionality.
-
Abstract The ongoing interest in colloidal nanocrystal solids for electronic and photonic devices necessitates that their thermal‐transport properties be well understood because heat dissipation frequently limits performance in these devices. Unfortunately, colloidal nanocrystal solids generally possess very low thermal conductivities. This very low thermal conductivity primarily results from the weak van der Waals interaction between the ligands of adjacent nanocrystals. We overcome this thermal‐transport bottleneck by crosslinking the ligands to exchange a weak van der Waals interaction with a strong covalent bond. We obtain thermal conductivities of up to 1.7 Wm−1 K−1that exceed prior reported values by a factor of 4. This improvement is significant because the entire range of prior reported values themselves only span a factor of 4 (i.e., 0.1–0.4 Wm−1 K−1). We complement our thermal‐conductivity measurements with mechanical nanoindentation measurements that demonstrate ligand crosslinking increases Young's modulus and sound velocity. This increase in sound velocity is a key bridge between mechanical and thermal properties because sound velocity and thermal conductivity are linearly proportional according to kinetic theory. Control experiments with non‐crosslinkable ligands, as well as transport modeling, further confirm that ligand crosslinking boosts thermal transport.
-
Abstract The ongoing interest in colloidal nanocrystal solids for electronic and photonic devices necessitates that their thermal‐transport properties be well understood because heat dissipation frequently limits performance in these devices. Unfortunately, colloidal nanocrystal solids generally possess very low thermal conductivities. This very low thermal conductivity primarily results from the weak van der Waals interaction between the ligands of adjacent nanocrystals. We overcome this thermal‐transport bottleneck by crosslinking the ligands to exchange a weak van der Waals interaction with a strong covalent bond. We obtain thermal conductivities of up to 1.7 Wm−1 K−1that exceed prior reported values by a factor of 4. This improvement is significant because the entire range of prior reported values themselves only span a factor of 4 (i.e., 0.1–0.4 Wm−1 K−1). We complement our thermal‐conductivity measurements with mechanical nanoindentation measurements that demonstrate ligand crosslinking increases Young's modulus and sound velocity. This increase in sound velocity is a key bridge between mechanical and thermal properties because sound velocity and thermal conductivity are linearly proportional according to kinetic theory. Control experiments with non‐crosslinkable ligands, as well as transport modeling, further confirm that ligand crosslinking boosts thermal transport.
-
We present a complete open-hardware and software materials acceleration platform (MAP) for sonochemical synthesis of nanocrystals using a versatile tool-changing platform (Jubilee) configured for automated ultrasound application, a liquid-handling robot (Opentrons OT2) and a well-plate spectrometer. An automated high-throughput protocol was developed demonstrating the synthesis of CdSe nanocrystals using sonochemistry and different combinations of sample conditions, including precursor and ligand compositions and concentrations. Cavitation caused by ultrasound fields causes local and transient increases in temperature and pressure sufficient to drive the decomposition of organometallic precursors to drive the chemical reaction leading to nanocrystal formation. A total of 625 unique sample conditions were prepared and analyzed in triplicate with an individual sample volume of as little as 0.5 mL, which drastically reduced chemical waste and experimental times. The rapid onset of cavitation and quick dissipation of energy result in fast nucleation with little nanocrystal growth leading to the formation of small nanocrystals or magic-size clusters (MSCs) depending on composition. Using the effective mass approximation, the calculated QD diameters obtained under all our experimental conditions ranged between 1.3 and 2.1 nm, which was also validated with small angle X-ray scattering (SAXS). Polydispersity, QD shape and optical properties largely varied depending on themore »