skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Bounds for List-Decoding and List-Recovery of Random Linear Codes
Award ID(s):
1814629 1844628
PAR ID:
10295086
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
176
ISSN:
1868-8969
Page Range / eLocation ID:
9:1--9:21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Successive cancellation list decoding of polar codes provides very good performance for short to moderate block lengths. However, the list size required to approach the performance of maximum-likelihood decoding is still not well understood theoretically. This work identifies information-theoretic quantities that are closely related to this required list size. It also provides a natural approximation for these quantities that can be computed efficiently even for very long codes. Simulation results are provided for the binary erasure channel as well as the binary-input additive white Gaussian noise channel. 
    more » « less
  2. null (Ed.)
  3. Meka, Raghu (Ed.)
    We initiate the study of approximately counting the number of list packings of a graph. The analogous problem for usual vertex coloring and list coloring has attracted substantial attention. For list packing the setup is similar, but we seek a full decomposition of the lists of colors into pairwise-disjoint proper list colorings. The existence of a list packing implies the existence of a list coloring, but the converse is false. Recent works on list packing have focused on existence or extremal results of on the number of list packings, but here we turn to the algorithmic aspects of counting and sampling. In graphs of maximum degree Δ and when the number of colors is at least Ω(Δ²), we give a fully polynomial-time randomized approximation scheme (FPRAS) based on rapid mixing of a natural Markov chain (the Glauber dynamics) which we analyze with the path coupling technique. Some motivation for our work is the investigation of an atypical spin system, one where the number of spins for each vertex is much larger than the graph degree. 
    more » « less