Knowledge graphs (KGs) are of great importance in various artificial intelligence systems, such as question answering, relation extraction, and recommendation. Nevertheless, most real-world KGs are highly incomplete, with many missing relations between entities. To discover new triples (i.e., head entity, relation, tail entity), many KG completion algorithms have been proposed in recent years. However, a vast majority of existing studies often require a large number of training triples for each relation, which contradicts the fact that the frequency distribution of relations in KGs often follows a long tail distribution, meaning a majority of relations have only very few triples. Meanwhile, since most existing large-scale KGs are constructed automatically by extracting information from crowd-sourcing data using heuristic algorithms, plenty of errors could be inevitably incorporated due to the lack of human verification, which greatly reduces the performance for KG completion. To tackle the aforementioned issues, in this paper, we study a novel problem of error-aware few-shot KG completion and present a principled KG completion framework REFORM. Specifically, we formulate the problem under the few-shot learning framework, and our goal is to accumulate meta-knowledge across different meta-tasks and generalize the accumulated knowledge to the meta-test task for error-aware few-shot KG completion. To address the associated challenges resulting from insufficient training samples and inevitable errors, we propose three essential modules neighbor encoder, cross-relation aggregation, and error mitigation in each meta-task. Extensive experiments on three widely used KG datasets demonstrate the superiority of the proposed framework REFORM over competitive baseline methods.
more »
« less
Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-Ranking Network
Knowledge Graph (KG) completion research usually focuses on densely connected benchmark datasets that are not representative of real KGs. We curate two KG datasets that include biomedical and encyclopedic knowledge and use an existing commonsense KG dataset to explore KG completion in the more realistic setting where dense connectivity is not guaranteed. We develop a deep convolutional network that utilizes textual entity representations and demonstrate that our model outperforms recent KG completion methods in this challenging setting. We find that our model’s performance improvements stem primarily from its robustness to sparsity. We then distill the knowledge from the convolutional network into a student network that re-ranks promising candidate entities. This re-ranking stage leads to further improvements in performance and demonstrates the effectiveness of entity re-ranking for KG completion.
more »
« less
- Award ID(s):
- 1917955
- PAR ID:
- 10295161
- Date Published:
- Journal Name:
- Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-Ranking Network
- Page Range / eLocation ID:
- 1016 to 1029
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.more » « less
-
null (Ed.)Entity set expansion (ESE) refers to mining ``siblings'' of some user-provided seed entities from unstructured data. It has drawn increasing attention in the IR and NLP communities for its various applications. To the best of our knowledge, there has not been any work towards a supervised neural model for entity set expansion from unstructured data. We suspect that the main reason is the lack of massive annotated entity sets. In order to solve this problem, we propose and implement a toolkit called {DBpedia-Sets}, which automatically extracts entity sets from any plain text collection and can provide a large number of distant supervision data for neural model training. We propose a two-channel neural re-ranking model {NESE} that jointly learns exact and semantic matching of entity contexts. The former accepts entity-context co-occurrence information and the latter learns a non-linear transformer from generally pre-trained embeddings to ESE-task specific embeddings for entities. Experiments on real datasets of different scales from different domains show that {NESE} outperforms state-of-the-art approaches in terms of precision and MAP, where the improvements are statistically significant and are higher when the given corpus is larger.more » « less
-
KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language ModelsLarge Language Models (LLMs) have shown impressive performance in various tasks, including knowledge graph completion (KGC). However, current studies mostly apply LLMs to classification tasks, like identifying missing triplets, rather than ranking-based tasks, where the model ranks candidate entities based on plausibility. This focus limits the practical use of LLMs in KGC, as real-world applications prioritize highly plausible triplets. Additionally, while graph paths can help infer the existence of missing triplets and improve completion accuracy, they often contain redundant information. To address these issues, we propose KG-CF, a framework tailored for ranking-based KGC tasks. KG-CF leverages LLMs’ reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.more » « less
-
Learning representations of entity mentions is a core component of modern entity linking systems for both candidate generation and making linking predictions. In this paper, we present and empirically analyze a novel training approach for learning mention and entity representations that is based on building minimum spanning arborescences (i.e., directed spanning trees) over mentions and entities across documents to explicitly model mention coreference relationships. We demonstrate the efficacy of our approach by showing significant improvements in both candidate generation recall and linking accuracy on the Zero-Shot Entity Linking dataset and MedMentions, the largest publicly available biomedical dataset. In addition, we show that our improvements in candidate generation yield higher quality re-ranking models downstream, setting a new SOTA result in linking accuracy on MedMentions. Finally, we demonstrate that our improved mention representations are also effective for the discovery of new entities via cross-document coreference.more » « less
An official website of the United States government

