skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fine-Scale Sea Ice Segmentation for High-Resolution Satellite Imagery with Weakly-Supervised CNNs
Fine-scale sea ice conditions are key to our efforts to understand and model climate change. We propose the first deep learning pipeline to extract fine-scale sea ice layers from high-resolution satellite imagery (Worldview-3). Extracting sea ice from imagery is often challenging due to the potentially complex texture from older ice floes (i.e., floating chunks of sea ice) and surrounding slush ice, making ice floes less distinctive from the surrounding water. We propose a pipeline using a U-Net variant with a Resnet encoder to retrieve ice floe pixel masks from very-high-resolution multispectral satellite imagery. Even with a modest-sized hand-labeled training set and the most basic hyperparameter choices, our CNN-based approach attains an out-of-sample F1 score of 0.698–a nearly 60% improvement when compared to a watershed segmentation baseline. We then supplement our training set with a much larger sample of images weak-labeled by a watershed segmentation algorithm. To ensure watershed derived pack-ice masks were a good representation of the underlying images, we created a synthetic version for each weak-labeled image, where areas outside the mask are replaced by open water scenery. Adding our synthetic image dataset, obtained at minimal effort when compared with hand-labeling, further improves the out-of-sample F1 score to 0.734. Finally, we use an ensemble of four test metrics and evaluated after mosaicing outputs for entire scenes to mimic production setting during model selection, reaching an out-of-sample F1 score of 0.753. Our fully-automated pipeline is capable of detecting, monitoring, and segmenting ice floes at a very fine level of detail, and provides a roadmap for other use-cases where partial results can be obtained with threshold-based methods but a context-robust segmentation pipeline is desired.  more » « less
Award ID(s):
1740595
PAR ID:
10295241
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
18
ISSN:
2072-4292
Page Range / eLocation ID:
3562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to the growing volume of remote sensing data and the low latency required for safe marine navigation, machine learning (ML) algorithms are being developed to accelerate sea ice chart generation, currently a manual interpretation task. However, the low signal-to-noise ratio of the freely available Sentinel-1 Synthetic Aperture Radar (SAR) imagery, the ambiguity of backscatter signals for ice types, and the scarcity of open-source high-resolution labelled data makes automating sea ice mapping challenging. We use Extreme Earth version 2, a high-resolution benchmark dataset generated for ML training and evaluation, to investigate the effectiveness of ML for automated sea ice mapping. Our customized pipeline combines ResNets and Atrous Spatial Pyramid Pooling for SAR image segmentation. We investigate the performance of our model for: i) binary classification of sea ice and open water in a segmentation framework; and ii) a multiclass segmentation of five sea ice types. For binary ice-water classification, models trained with our largest training set have weighted F1 scores all greater than 0.95 for January and July test scenes. Specifically, the median weighted F1 score was 0.98, indicating high performance for both months. By comparison, a competitive baseline U-Net has a weighted average F1 score of ranging from 0.92 to 0.94 (median 0.93) for July, and 0.97 to 0.98 (median 0.97) for January. Multiclass ice type classification is more challenging, and even though our models achieve 2% improvement in weighted F1 average compared to the baseline U-Net, test weighted F1 is generally between 0.6 and 0.80. Our approach can efficiently segment full SAR scenes in one run, is faster than the baseline U-Net, retains spatial resolution and dimension, and is more robust against noise compared to approaches that rely on patch classification. 
    more » « less
  2. Despite recent progress in computer vision, fine-grained interpretation of satellite images remains challenging because of a lack of labeled training data. To overcome this limitation, we construct a novel dataset called WikiSatNet by pairing geo-referenced Wikipedia articles with satellite imagery of their corresponding locations. We then propose two strategies to learn representations of satellite images by predicting properties of the corresponding articles from the images. Leveraging this new multi-modal dataset, we can drastically reduce the quantity of human-annotated labels and time required for downstream tasks. On the recently released fMoW dataset, our pre-training strategies can boost the performance of a model pre-trained on ImageNet by up to 4.5% in F1 score. 
    more » « less
  3. null (Ed.)
    Very high spatial resolution commercial satellite imagery can inform observation, mapping, and documentation of micro-topographic transitions across large tundra regions. The bridging of fine-scale field studies with pan-Arctic system assessments has until now been constrained by a lack of overlap in spatial resolution and geographical coverage. This likely introduced biases in climate impacts on, and feedback from the Arctic region to the global climate system. The central objective of this exploratory study is to develop an object-based image analysis workflow to automatically extract ice-wedge polygon troughs from very high spatial resolution commercial satellite imagery. We employed a systematic experiment to understand the degree of interoperability of knowledge-based workflows across distinct tundra vegetation units—sedge tundra and tussock tundra—focusing on the same semantic class. In our multi-scale trough modelling workflow, we coupled mathematical morphological filtering with a segmentation process to enhance the quality of image object candidates and classification accuracies. Employment of the master ruleset on sedge tundra reported classification accuracies of correctness of 0.99, completeness of 0.87, and F1 score of 0.92. When the master ruleset was applied to tussock tundra without any adaptations, classification accuracies remained promising while reporting correctness of 0.87, completeness of 0.77, and an F1 score of 0.81. Overall, results suggest that the object-based image analysis-based trough modelling workflow exhibits substantial interoperability across the terrain while producing promising classification accuracies. From an Arctic earth science perspective, the mapped troughs combined with the ArcticDEM can allow hydrological assessments of lateral connectivity of the rapidly changing Arctic tundra landscape, and repeated mapping can allow us to track fine-scale changes across large regions and that has potentially major implications on larger riverine systems. 
    more » « less
  4. Satellite image time series (SITS) segmentation is crucial for many applications, like environmental monitoring, land cover mapping, and agricultural crop type classification. However, training models for SITS segmentation remains a challenging task due to the lack of abundant training data, which requires fine-grained annotation. We propose S4, a new self-supervised pretraining approach that significantly reduces the requirement for labeled training data by utilizing two key insights of satellite imagery: (a) Satellites capture images in different parts of the spectrum, such as radio frequencies and visible frequencies. (b) Satellite imagery is geo-registered, allowing for fine-grained spatial alignment. We use these insights to formulate pretraining tasks in S4. To the best of our knowledge, S4 is the first multimodal and temporal approach for SITS segmentation. S4’s novelty stems from leveraging multiple properties required for SITS self-supervision: (1) multiple modalities, (2) temporal information, and (3) pixel-level feature extraction. We also curate m2s2-SITS, a large-scale dataset of unlabeled, spatially aligned, multimodal, and geographic-specific SITS that serves as representative pretraining data for S4. Finally, we evaluate S4 on multiple SITS segmentation datasets and demonstrate its efficacy against competing baselines while using limited labeled data. Through a series of extensive comparisons and ablation studies, we demonstrate S4’s ability as an effective feature extractor for downstream semantic segmentation. 
    more » « less
  5. Abstract The world’s coastlines are spatially highly variable, coupled-human-natural systems that comprise a nested hierarchy of component landforms, ecosystems, and human interventions, each interacting over a range of space and time scales. Understanding and predicting coastline dynamics necessitates frequent observation from imaging sensors on remote sensing platforms. Machine Learning models that carry out supervised (i.e., human-guided) pixel-based classification, or image segmentation, have transformative applications in spatio-temporal mapping of dynamic environments, including transient coastal landforms, sediments, habitats, waterbodies, and water flows. However, these models require large and well-documented training and testing datasets consisting of labeled imagery. We describe “Coast Train,” a multi-labeler dataset of orthomosaic and satellite images of coastal environments and corresponding labels. These data include imagery that are diverse in space and time, and contain 1.2 billion labeled pixels, representing over 3.6 million hectares. We use a human-in-the-loop tool especially designed for rapid and reproducible Earth surface image segmentation. Our approach permits image labeling by multiple labelers, in turn enabling quantification of pixel-level agreement over individual and collections of images. 
    more » « less