skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uptake and Toxicity of Respirable Carbon-Rich Uranium-Bearing Particles: Insights into the Role of Particulates in Uranium Toxicity
Award ID(s):
1914490 1652619
PAR ID:
10295281
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
55
Issue:
14
ISSN:
0013-936X
Page Range / eLocation ID:
9949 to 9957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    Speleothems are important timekeepers of Earth’s climate history. A key advantage of speleothems is that they can be dated using U–Th techniques. Mass spectrometric methods for measuring U and Th isotopes has led to vast improvements in measurement precision and a dramatic reduction in sample size. As a result, the timing of past climate, environment, and Earth system changes can be investigated at exceptional temporal precision. In this review, we summarize the principles and history of U–Th dating of speleothems. Finally, we highlight three studies that use U–Th dated speleothems to investigate past changes to the Asian monsoon, constrain the timing of sociopolitical change in ancient civilizations, and develop a speleothem-based calibration of the 14C timescale. 
    more » « less
  4. Abstract The synthesis and characterization of sterically unencumbered homoleptic organouranium aryl complexes containing U−C σ‐bonds has been of interest to the chemical community for over 70 years. Reported herein are the first structurally characterized, sterically unencumbered homoleptic uranium (IV) aryl‐ate species of the form [U(Ar)6]2−(Ar=Ph,p‐tolyl,p‐Cl‐Ph). Magnetic circular dichroism (MCD) spectroscopy and computational studies provide insight into electronic structure and bonding interactions in the U−C σ‐bond across this series of complexes. Overall, these studies solve a decades‐long challenge in synthetic uranium chemistry, enabling new insight into electronic structure and bonding in organouranium complexes. 
    more » « less