skip to main content


Title: Twisted characters and holomorphic symmetries
Abstract We consider holomorphic twists of arbitrary supersymmetric theories in four dimensions. Working in the BV formalism, we rederive classical results characterizing the holomorphic twist of chiral and vector supermultiplets, computing the twist explicitly as a family over the space of nilpotent supercharges in minimal supersymmetry. The BV formalism allows one to work with or without auxiliary fields, according to preference; for chiral superfields, we show that the result of the twist is an identical BV theory, the holomorphic $$\beta \gamma $$ β γ system with superpotential, independent of whether or not auxiliary fields are included. We compute the character of local operators in this holomorphic theory, demonstrating agreement of the free local operators with the usual index of free fields. The local operators with superpotential are computed via a spectral sequence and are shown to agree with functions on a formal mapping space into the derived critical locus of the superpotential. We consider the holomorphic theory on various geometries, including Hopf manifolds and products of arbitrary pairs of Riemann surfaces, and offer some general remarks on dimensional reductions of holomorphic theories along the $$(n-1)$$ ( n - 1 ) -sphere to topological quantum mechanics. We also study an infinite-dimensional enhancement of the flavor symmetry in this example, to a recently studied central extension of the derived holomorphic functions with values in the original Lie algebra, that generalizes the familiar Kac–Moody enhancement in two-dimensional chiral theories.  more » « less
Award ID(s):
1645877
NSF-PAR ID:
10295347
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Letters in Mathematical Physics
Volume:
110
Issue:
10
ISSN:
0377-9017
Page Range / eLocation ID:
2779 to 2853
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We show that four-dimensional superconformal algebras admit an infinite-dimensional derived enhancement after performing a holomorphic twist. The type of higher symmetry algebras we find is closely related to algebras studied by Faonte–Hennion–Kapranov, Hennion–Kapranov, and the second author with Gwilliam in the context of holomorphic QFT. We show that these algebras are related to the two-dimensional chiral algebras extracted from four-dimensional superconformal theories by Beem and collaborators; further deforming by a superconformal element induces the Koszul resolution of a plane in $$\mathbb {C}^2 \cong {\mathbb {R}}^4$$C2R4. The central charges at the level of chiral algebras arise from central extensions of the higher symmetry algebras.

     
    more » « less
  2. A bstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2 ∗ theory with respect to the squashing parameter b and mass parameter m , evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1 /N expansion, these fourth derivatives are modular invariant functions of ( τ, $$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1 /N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1 /N , they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS 5 × S 5 . 
    more » « less
  3. A bstract We study monodromy defects in O ( N ) symmetric scalar field theories in d dimensions. After a Weyl transformation, a monodromy defect may be described by placing the theory on S 1 × H d− 1 , where H d− 1 is the hyperbolic space, and imposing on the fundamental fields a twisted periodicity condition along S 1 . In this description, the codimension two defect lies at the boundary of H d− 1 . We first study the general monodromy defect in the free field theory, and then develop the large N expansion of the defect in the interacting theory, focusing for simplicity on the case of N complex fields with a one-parameter monodromy condition. We also use the ϵ -expansion in d = 4 − ϵ , providing a check on the large N approach. When the defect has spherical geometry, its expectation value is a meaningful quantity, and it may be obtained by computing the free energy of the twisted theory on S 1 × H d− 1 . It was conjectured that the logarithm of the defect expectation value, suitably multiplied by a dimension dependent sine factor, should decrease under a defect RG flow. We check this conjecture in our examples, both in the free and interacting case, by considering a defect RG flow that corresponds to imposing alternate boundary conditions on one of the low-lying Kaluza-Klein modes on H d− 1 . We also show that, adapting standard techniques from the AdS/CFT literature, the S 1 × H d− 1 setup is well suited to the calculation of the defect CFT data, and we discuss various examples, including one-point functions of bulk operators, scaling dimensions of defect operators, and four-point functions of operator insertions on the defect. 
    more » « less
  4. null (Ed.)
    A bstract We obtain an asymptotic formula for the average value of the operator product expansion coefficients of any unitary, compact two dimensional CFT with c > 1. This formula is valid when one or more of the operators has large dimension or — in the presence of a twist gap — has large spin. Our formula is universal in the sense that it depends only on the central charge and not on any other details of the theory. This result unifies all previous asymptotic formulas for CFT2 structure constants, including those derived from crossing symmetry of four point functions, modular covariance of torus correlation functions, and higher genus modular invariance. We determine this formula at finite central charge by deriving crossing kernels for higher genus crossing equations, which give analytic control over the structure constants even in the absence of exact knowledge of the conformal blocks. The higher genus modular kernels are obtained by sewing together the elementary kernels for four-point crossing and modular transforms of torus one-point functions. Our asymptotic formula is related to the DOZZ formula for the structure constants of Liouville theory, and makes precise the sense in which Liouville theory governs the universal dynamics of heavy operators in any CFT. The large central charge limit provides a link with 3D gravity, where the averaging over heavy states corresponds to a coarse-graining over black hole microstates in holographic theories. Our formula also provides an improved understanding of the Eigenstate Thermalization Hypothesis (ETH) in CFT 2 , and suggests that ETH can be generalized to other kinematic regimes in two dimensional CFTs. 
    more » « less
  5. A bstract We study solvable deformations of two-dimensional quantum field theories driven by a bilinear operator constructed from a pair of conserved U(1) currents J a . We propose a quantum formulation of these deformations, based on the gauging of the corresponding symmetries in a path integral. This formalism leads to an exact dressing of the S -matrix of the system, similarly as what happens in the case of a $$ \textrm{T}\overline{\textrm{T}} $$ T T ¯ deformation. For conformal theories the deformations under study are expected to be exactly marginal. Still, a peculiar situation might arise when the conserved currents J a are not well-defined local operators in the original theory. A simple example of this kind of system is provided by rotation currents in a theory of multiple free, massless, non-compact bosons. We verify that, somewhat unexpectedly, such a theory is indeed still conformal after deformation and that it coincides with a TsT transformation of the original system. We then extend our formalism to the case in which the conserved currents are non-Abelian and point out its connection with Deformed T-dual Models and homogeneous Yang-Baxter deformations. In this case as well the deformation is based on a gauging of the symmetries involved and it turns out to be non-trivial only if the symmetry group admits a non-trivial central extension. Finally we apply what we learned by relating the $$ \textrm{T}\overline{\textrm{T}} $$ T T ¯ deformation to the central extension of the two-dimensional Poincaré algebra. 
    more » « less