We analyse 33 Type I superluminous supernovae (SLSNe) taken from Zwicky Transient Facility (ZTF)’s Bright Transient Survey to investigate the local environments of their host galaxies. We use a spectroscopic sample of galaxies from the Sloan Digital Sky Survey (SDSS) to determine the large-scale environmental density of the host galaxy. Noting that SLSNe are generally found in galaxies with low stellar masses, high star formation rates (SFRs), and low metallicities, we find that SLSN hosts are also rarely found within high-density environments. Only $3\substack{+9 \\ -1}$ per cent of SLSN hosts were found in regions with two or more bright galaxies within 2 Mpc. For comparison, we generate a sample of 662 SDSS galaxies matched to the photometric properties of the SLSN hosts. This sample is also rarely found within high-density environments, suggesting that galaxies with properties required for SLSN production favour more isolated environments. Furthermore, we select galaxies within the IllustrisTNG simulation to match SLSN host galaxy properties in colour and stellar mass. We find that the fraction of simulated galaxies in high-density environments quantitatively match the observed SLSN hosts only if we restrict to simulated galaxies with metallicity 12 + log (O/H) ≤ 8.12. In contrast, limiting to only the highest specific star formation rate (sSFR) galaxies in the sample leads to an overabundance of SLSN hosts in high-density environments. Thus, our measurement of the environmental density of SLSN host galaxies appears to break the degeneracy between low metallicity and high sSFR as the driver for SLSN hosts and provides evidence that the most constraining factor on SLSN production is low metallicity.
- Award ID(s):
- 1815935
- NSF-PAR ID:
- 10295419
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 498
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 2575 to 2593
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT The 5-yr Dark Energy Survey Supernova Programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterizing the host galaxies of transients plays a key role in their classification, the study of their formation mechanisms, and the cosmological analyses. To derive accurate host galaxy properties, we create depth-optimized coadds using single-epoch DES-SN images that are selected based on sky and atmospheric conditions. For each of the five DES-SN seasons, a separate coadd is made from the other four seasons such that each SN has a corresponding deep coadd with no contaminating SN emission. The coadds reach limiting magnitudes of order ∼27 in g band, and have a much smaller magnitude uncertainty than the previous DES-SN host templates, particularly for faint objects. We present the resulting multiband photometry of host galaxies for samples of spectroscopically confirmed type Ia (SNe Ia), core-collapse (CCSNe), and superluminous (SLSNe) as well as rapidly evolving transients (RETs) discovered by DES-SN. We derive host galaxy stellar masses and probabilistically compare stellar-mass distributions to samples from other surveys. We find that the DES spectroscopically confirmed sample of SNe Ia selects preferentially fewer high-mass hosts at high-redshift compared to other surveys, while at low redshift the distributions are consistent. DES CCSNe and SLSNe hosts are similar to other samples, while RET hosts are unlike the hosts of any other transients, although these differences have not been disentangled from selection effects.more » « less
-
Abstract We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT 2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). In the ATLAS
o band, AT 2022aedm exhibited a rise time of 9 ± 1 days, reaching a luminous peak withM g ≈ −22 mag. It faded by 2 mag in theg band during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. Radio and X-ray observations rule out a relativistic AT 2018cow–like explosion. A spectrum in the first few days after explosion showed short-lived Heii emission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blueshifted absorption lines, possibly arising in a wind withv ≈ 2700 km s−1. We identify two further transients in the literature (Dougie in particular, as well as AT 2020bot) that share similarities in their luminosities, timescales, color evolution, and largely featureless spectra and propose that these may constitute a new class of transients: luminous fast coolers. All three events occurred in passive galaxies at offsets of ∼4–10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or black holes. The light curves and spectra appear to be consistent with shock breakout emission, though this mechanism is usually associated with core-collapse supernovae. The encounter of a star with a stellar-mass black hole may provide a promising alternative explanation. -
ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $\Delta \rm log(\rm O/H) \sim 0.25$ dex at M*< $10^{9.75}\, \mathrm{M}_{\odot }$ down to $\Delta \rm log(\rm O/H) \sim 0.05$ at M* ≳ $10^{10.5}\, \mathrm{M}_{\odot }$. In contrast, the O3N2-based MZR shows a constant offset of $\Delta \rm log(\rm O/H) \sim 0.30$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$\log (\rm O3N2)$ relations. We find an anticorrelation between $\log (\rm O/H)$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5 stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $\log (\rm SFR / M_{\odot } \, yr^{-1})$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope.more » « less
-
ABSTRACT Understanding how galaxies interact with the circumgalactic medium (CGM) requires determining how galaxies’ morphological and stellar properties correlate with their CGM properties. We report an analysis of 66 well-imaged galaxies detected in Hubble Space Telescope and Very Large Telescope MUSE observations and determined to be within ±500 km s−1 of the redshifts of strong intervening quasar absorbers at 0.2 ≲ z ≲ 1.4 with H i column densities $N_{\rm H I} \gt 10^{18}\, \rm cm^{-2}$. We present the geometrical properties (Sérsic indices, effective radii, axis ratios, and position angles) of these galaxies determined using galfit. Using these properties along with star formation rates (SFRs, estimated using the H α or [O ii] luminosity) and stellar masses (M* estimated from spectral energy distribution fits), we examine correlations among various stellar and CGM properties. Our main findings are as follows: (1) SFR correlates well with M*, and most absorption-selected galaxies are consistent with the star formation main sequence of the global population. (2) More massive absorber counterparts are more centrally concentrated and are larger in size. (3) Galaxy sizes and normalized impact parameters correlate negatively with NHI, consistent with higher NHI absorption arising in smaller galaxies, and closer to galaxy centres. (4) Absorption and emission metallicities correlate with M* and specific SFR, implying metal-poor absorbers arise in galaxies with low past star formation and faster current gas consumption rates. (5) SFR surface densities of absorption-selected galaxies are higher than predicted by the Kennicutt–Schmidt relation for local galaxies, suggesting a higher star formation efficiency in the absorption-selected galaxies.