skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Encoder-less Robot Control for Space Operations with Continuum Robots
Continuum robots have strong potential for application in Space environments. However, their modeling is challenging in comparison with traditional rigid-link robots. The Kinematic-Model-Free (KMF) robot control method has been shown to be extremely effective in permitting a rigid-link robot to learn approximations of local kinematics and dynamics (“kinodynamics”) at various points in the robot’s task space. These approximations enable the robot to follow various trajectories and even adapt to changes in the robot’s kinematic structure. In this paper, we present the adaptation of the KMF method to a three-section, nine degrees-of-freedom continuum manipulator for both planar and spatial task spaces. Using only an external 3D camera, we show that the KMF method allows the continuum robot to converge to various desired set points in the robot’s task space, avoiding the complexities inherent in solving this problem using traditional inverse kinematics. The success of the method shows that a continuum robot can “learn” enough information from an external camera to reach and track desired points and trajectories, without needing knowledge of exact shape or position of the robot. We similarly apply the method in a simulated example of a continuum robot performing an inspection task on board the ISS.  more » « less
Award ID(s):
1718075
PAR ID:
10295509
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Aerospace Conference
Page Range / eLocation ID:
1-11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft robots have garnered great interest in recent years due to their ability to navigate complex environments and enhance safety during unplanned collisions. However, their softness typically limits the forces they can apply and payloads they can carry, compared to traditional rigid-link robots. In this paper we seek to create a hybrid manipulator that can switch between a state in which it acts as a soft robot, and a state in which it has a series of selectively stiffenable links. The latter state, accomplished by solidifying chambers of low melting point metal alloy within the robot, is in some ways analogous to a traditional rigid-link manipulator. It also has the added benefit that each “link” can be set to a desired straight or curved shape before solidification and re-shaped when desired. Thermoelectric heat pumps enable local heating and cooling of the alloy, and tendons running along the robot enable actuation. Using a simple two-link prototype, we illustrate how alloy melting and solidification can be used to modify the robot’s workspace and payload capacity. 
    more » « less
  2. Soft robots have shown great potential to enable safe interactions with unknown environments due to their inherent compliance and variable stiffness. However, without knowledge of potential contacts, a soft robot could exhibit rigid behaviors in a goal-reaching task and collide into obstacles. In this paper, we introduce a Sliding Mode Augmented by Reactive Transitioning (SMART) controller to detect the contact events, adjust the robot’s desired trajectory, and reject estimated disturbances in a goal reaching task. We employ a sliding mode controller to track the desired trajectory with a nonlinear disturbance observer (NDOB) to estimate the lumped disturbance, and a switching algorithm to adjust the desired robot trajectories. The proposed controller is validated on a pneumatic-driven fabric soft robot whose dynamics is described by a new extended rigid-arm model to fit the actuator design. A stability analysis of the proposed controller is also presented. Experimental results show that, despite modeling uncertainties, the robot can detect obstacles, adjust the reference trajectories to maintain compliance, and recover to track the original desired path once the obstacle is removed. Without force sensors, the proposed model-based controller can adjust the robot’s stiffness based on the estimated disturbance to achieve goal reaching and compliant interaction with unknown obstacles. 
    more » « less
  3. Continuum robots suffer large deflections due to internal and external forces. Accurate modeling of their passive compliance is necessary for accurate environmental interaction, especially in scenarios where direct force sensing is not practical. This paper focuses on deriving analytic formulations for the compliance of continuum robots that can be modeled as Kirchhoff rods. Compared to prior works, the approach presented herein is not subject to the constant-curvature assumptions to derive the configuration space compliance, and we do not rely on computationally-expensive finite difference approximations to obtain the task space compliance. Using modal approximations over curvature space and Lie group integration, we obtain closed-form expressions for the task and configuration space compliance matrices of continuum robots, thereby bridging the gap between constant-curvature analytic formulations of configuration space compliance and variable curvature task space compliance. We first present an analytic expression for the compliance of aingle Kirchhoff rod.We then extend this formulation for computing both the task space and configuration space compliance of a tendon-actuated continuum robot. We then use our formulation to study the tradeoffs between computation cost and modeling accuracy as well as the loss in accuracy from neglecting the Jacobian derivative term in the compliance model. Finally, we experimentally validate the model on a tendon-actuated continuum segment, demonstrating the model’s ability to predict passive deflections with error below 11.5% percent of total arc length. 
    more » « less
  4. Tendon-driven continuum robot kinematic models are frequently computationally expensive, inaccurate due to unmodeled effects, or both. In particular, unmodeled effects produce uncertainties that arise during the robot’s operation that lead to variability in the resulting geometry. We propose a novel solution to these issues through the development of a Gaussian mixture kinematic model. We train a mixture density network to output a Gaussian mixture model representation of the robot geometry given the current tendon displacements. This model computes a probability distribution that is more representative of the true distribution of geometries at a given configuration than a model that outputs a single geometry, while also reducing the computation time. We demonstrate uses of this model through both a trajectory optimization method that explicitly reasons about the workspace uncertainty to minimize the probability of collision and an inverse kinematics method that maximizes the likelihood of occupying a desired geometry. 
    more » « less
  5. We consider a class of robotic systems composed of high-elongation linear actuators connected at universal joints. We derive the differential kinematics of such robots, and show that any instantaneous velocity of the nodes can be achieved through actuator motions if the graph describing the robot’s configuration is infinitesimally rigid. We formulate physical constraints that constrain the maximum and minimum length of each actuator, the minimum distance between unconnected actuators, the minimum angle between connected actuators, and constraints that ensure the robot avoids singular configurations. We present two planning algorithms that allow a linear actuator robot to locomote. The first algorithm repeatedly solves a nonlinear optimization problem online to move the robot’s center of mass in a desired direction for one time step. This algorithm can be used for an arbitrary linear actuator robot but does not guarantee persistent feasibility. The second method ensures persistent feasibility with a hierarchical coarse-fine planning decomposition, and applies to linear actuator robots with a certain symmetry property. We compare these two planning methods in simulation studies. 
    more » « less