- Award ID(s):
- 2018308
- NSF-PAR ID:
- 10295805
- Date Published:
- Journal Name:
- ACM SIGCOMM Computer Communication Review
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0146-4833
- Page Range / eLocation ID:
- 10 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Many promising networking research ideas in programmable networks never see the light of day. Yet, deploying research prototypes in production networks can help validate research ideas, improve them with faster feedback, uncover new research questions, and also ease the subsequent transition to practice. In this paper, we show how researchers can run and validate their research ideas in their own backyards—on their production campus networks—and we have seen that such a demonstrator can expedite the deployment of a research idea in practice to solve real network operation problems. We present P4Campus, a proof-of-concept that encompasses tools, an infrastructure design, strategies, and best practices—–both technical and non-technical–—that can help researchers run experiments against their programmable network idea in their own network. We use network tapping devices, packet brokers, and commodity programmable switches to enable running experiments to evaluate research ideas on a production campus network. We present several compelling data-plane applications as use cases that run on our campus and solve production network problems. By sharing our experiences and open-sourcing our P4 apps [28], we hope to encourage similar efforts on other campuses.more » « less
-
HPC networks and campus networks are beginning to leverage various levels of network programmability ranging from programmable network configuration (e.g., NETCONF/YANG, SNMP, OF-CONFIG) to software-based controllers (e.g., OpenFlow Controllers) to dynamic function placement via network function virtualization (NFV). While programmable networks offer new capabilities, they also make the network more difficult to debug. When applications experience unexpected network behavior, there is no established method to investigate the cause in a programmable network and many of the conventional troubleshooting debugging tools (e.g., ping and traceroute) can turn out to be completely useless. This absence of troubleshooting tools that support programmability is a serious challenge for researchers trying to understand the root cause of their networking problems. This paper explores the challenges of debugging an all-campus science DMZ network that leverages SDN-based network paths for high-performance flows. We propose Flow Tracer, a light-weight, data-plane-based debugging tool for SDN-enabled networks that allows end users to dynamically discover how the network is handling their packets. In particular, we focus on solving the problem of identifying an SDN path by using actual packets from the flow being analyzed as opposed to existing expensive approaches where either probe packets are injected into the network or actual packets are duplicated for tracing purposes. Our simulation experiments show that Flow Tracer has negligible impact on the performance of monitored flows. Moreover, our tool can be extended to obtain further information about the actual switch behavior, topology, and other flow information without privileged access to the SDN control plane.more » « less
-
null (Ed.)Abstract Networks have been an excellent framework for modeling complex biological information, but the methodological details of network-based tools are often described for a technical audience. We have developed Graphery, an interactive tutorial webserver that illustrates foundational graph concepts frequently used in network-based methods. Each tutorial describes a graph concept along with executable Python code that can be interactively run on a graph. Users navigate each tutorial using their choice of real-world biological networks that highlight the diverse applications of network algorithms. Graphery also allows users to modify the code within each tutorial or write new programs, which all can be executed without requiring an account. Graphery accepts ideas for new tutorials and datasets that will be shaped by both computational and biological researchers, growing into a community-contributed learning platform. Graphery is available at https://graphery.reedcompbio.org/.more » « less
-
null (Ed.)Network traffic modeling plays an important role in the generation of realistic network traffic in test environments. Especially in cases where researchers carry out experiments with real production-like traffic, as seen in specific home, enterprise, campus, LAN, or WAN networks. We present our ongoing work on a new framework that enables the methodical creation of application-agnostic traffic models from given network traces of a known network topology. The framework then uses these models to generate realistic traffic on a given network topology. We share a preliminary evaluation of the framework based on repeatable experiments where we model a typical web application traffic and then regenerate the traffic based on the model in a test network on our VTS (Virtual Topology Services) testbed.more » « less
-
Probabilistic circuits (PCs) such as sum-product networks efficiently represent large multi-variate probability distributions. They are preferred in practice over other probabilistic representations, such as Bayesian and Markov networks, because PCs can solve marginal inference (MAR) tasks in time that scales linearly in the size of the network. Unfortunately, the most probable explanation (MPE) task and its generalization, the marginal maximum-a-posteriori (MMAP) inference task remain NP-hard in these models. Inspired by the recent work on using neural networks for generating near-optimal solutions to optimization problems such as integer linear programming, we propose an approach that uses neural networks to approximate MMAP inference in PCs. The key idea in our approach is to approximate the cost of an assignment to the query variables using a continuous multilinear function and then use the latter as a loss function. The two main benefits of our new method are that it is self-supervised, and after the neural network is learned, it requires only linear time to output a solution. We evaluate our new approach on several benchmark datasets and show that it outperforms three competing linear time approximations: max-product inference, max-marginal inference, and sequential estimation, which are used in practice to solve MMAP tasks in PCs.