skip to main content

Title: Sensing of Life Activities at the Human-Microwave Frontier
Modern microwave radar technologies and systems are taking important roles in healthcare, security, and human–machine interface by remote sensing of human life activities. This paper first reviews the developments in the past decade on the sensing front-end, transponder tag, and leveraging of other wireless infrastructure such as Wi-Fi. Based on the state-of-the-art engineering technologies, several emerging applications will then be studied, including continuous authentication, behavior recognition, human-aware localization, occupancy sensing, blood pressure monitoring, and sleep medicine. As radio frequency spectrum becomes a scarce resource, the allocation and spectrum sharing of life activity sensing bandwidth with other wireless infrastructures will be discussed. Several future research directions will be laid out to solve challenges for ubiquitous deployment of these sensing technologies at the human–microwave frontier.  more » « less
Award ID(s):
1915738 1808613 1718483
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE journal of microwaves
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Passive Remote Sensing services are indispensable in modern society because of the applications related to climate studies and earth science. Among those, NASA’s Soil Moisture Active and Passive (SMAP) mission provides an essential climate variable such as the moisture content of the soil by using microwave radiation within protected band over 1400-1427 MHz. However, because of the increasing active wireless technologies such as Internet of Things (IoT), unmanned aerial vehicles (UAV), and 5G wireless communication, the SMAP’s passive observations are expected to experience an increasing number of Radio Frequency Interference (RFI). RFI is a well-documented issue and SMAP has a ground processing unit dedicated to tackling this issue. However, advanced techniques are needed to tackle the increasing RFI problem for passive sensing systems and to jointly coexist communication and sensing systems. In this paper, we apply a deep learning approach where a novel Convolutional Neural Network (CNN) architecture for both RFI detection and mitigation is employed. SMAP Level 1A spectrogram of antenna counts and various moments data are used as the inputs to the deep learning architecture. We simulate different types of RFI sources such as pulsed, CW or wideband anthropogenic signals. We then use artificially corrupted SMAP Level 1B antenna measurements in conjunction with RFI labels to train the learning architecture. While the learned detection network classifies input spectrograms as RFI or no-RFI cases, the mitigation network reconstructs the RFI mitigated antenna temperature images. The proposed learning framework both takes advantage of the existing SMAP data and the simulated RFI scenarios. Future remote sensing systems such as radiometers will suffer an increasing RFI problem and spectrum sharing and techniques that will allow coexistance of sensing and communication systems will be utmost importance for both parties. RFI detection and mitigation will remain a prerequisite for these radiometers and the proposed deep learning approach has the potential to provide an additional perspective to existing solutions. We will present detailed analysis on the selected deep learning architecture, obtained RFI detection accuracy levels and RFI mitigation performance. 
    more » « less
  2. 1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to a more-efficient, shared-spectrum approach in some bands of the radio frequency spectrum. A STEM workforce that understands the radio frequency spectrum and applications that use the spectrum is needed to further increase spectrum efficiency and cost-effectiveness of wireless systems over the next several decades to meet anticipated and unanticipated increases in wireless data capacity. 2. Relevant background including literature search examples if appropriate CISCO Systems’ annual survey indicates continued strong growth in demand for wireless data capacity. Meanwhile, undergraduate electrical and computer engineering courses in communication systems, electromagnetics, and networks tend to emphasize mathematical and theoretical fundamentals and higher-layer protocols, with less focus on fundamental concepts that are more specific to radio frequency wireless systems, including the physical and media access control layers of wireless communication systems and networks. An efficient way is needed to introduce basic RF system and spectrum concepts to undergraduate engineering students in courses such as those mentioned above who are unable to, or had not planned to take a full course in radio frequency / microwave engineering or wireless systems and networks. We have developed a series of interactive online modules that introduce concepts fundamental to wireless communications, the radio frequency spectrum, and spectrum sharing, and seek to present these concepts in context. The modules include interactive, JavaScript-based simulation exercises intended to reinforce the concepts that are presented in the modules through narrated slide presentations, text, and external links. Additional modules in development will introduce advanced undergraduate and graduate students and STEM professionals to configuration and programming of adaptive frequency-agile radios and spectrum management systems that can operate efficiently in congested radio frequency environments. Simulation exercises developed for the advanced modules allow both manual and automatic control of simulated radio links in timed, game-like simulations, and some exercises will enable students to select from among multiple pre-coded controller strategies and optionally edit the code before running the timed simulation. Additionally, we have developed infrastructure for running remote laboratory experiments that can also be embedded within the online modules, including a web-based user interface, an experiment management framework, and software defined radio (SDR) application software that runs in a wireless testbed initially developed for research. Although these experiments rely on limited hardware resources and introduce additional logistical considerations, they provide additional realism that may further challenge and motivate students. 3. Description of any assessment methods used to evaluate the effectiveness of the contribution, Each set of modules is preceded and followed by a survey. Each individual module is preceded by a quiz and followed by another quiz, with pre- and post-quiz questions drawn from the same pool. The pre-surveys allow students to opt in or out of having their survey and quiz results used anonymously in research. 4. Statement of results. The initial modules have been and are being used by three groups of students: (1) students in an undergraduate Introduction to Communication Systems course; (2) an interdisciplinary group of engineering students, including computer science students, who are participating in related undergraduate research project; and (3) students in a graduate-level communications course that includes both electrical and computer engineers. Analysis of results from the first group of students showed statistically significant increases from pre-quiz to post-quiz for each of four modules on fundamental wireless communication concepts. Results for the other students have not yet been analyzed, but also appear to show substantial pre-quiz to post-quiz increases in mean scores. 
    more » « less
  3. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  4. Abstract

    Sixth-generation wireless networks will aggregate higher-than-ever mobile traffic into ultra-high capacity backhaul links, which could be deployed on the largely untapped spectrum above 100 GHz. Current regulations however prevent the allocation of large contiguous bands for communications at these frequencies, since several narrow bands are reserved to protect passive sensing services. These include radio astronomy and Earth exploration satellites using sensors that suffer from harmful interference from active transmitters. Here we show that active and passive spectrum sharing above 100 GHz is feasible by introducing and experimentally evaluating a real-time, dual-band backhaul prototype that tracks the presence of passive users (in this case the NASA satellite Aura) and avoids interference by automatically switching bands (123.5–140 GHz and 210–225 GHz). Our system enables wide-band transmissions in the above-100-GHz spectrum, while avoiding harmful interference to satellite systems, paving the way for innovative spectrum policy and technologies in these crucial bands.

    more » « less
  5. Passive remote sensing services are indispensable in modern society as they provide crucial information for Earth science and climate studies. In parallel, modern society also depends heavily on active wireless communication technologies for daily routines, with emerging technologies such as 5G further increasing this dependence. Unfortunately, the growth of active wireless systems often increases radio frequency interference (RFI) experienced by passive systems. This necessitates development of coexistence techniques and creation of new technology that enhances the existing and future wireless infrastructure. To study this problem, we are developing a unique testbed for collecting remote sensing datasets with ground truth in real-world settings, which will enable training, optimization, and benchmarking the coexistence solutions. The testbed includes (1) a software defined radio (SDR) based radiometer, incorporated with a dual-polarized microwave antenna operating in the L-band (1400 MHz–1427 MHz) and (2) prototyping SDR-based communication systems. This paper presents design and implementation of such radiometer from an unmanned aircraft system (UAS) for supporting different scenarios and geometries. 
    more » « less