skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching Encrypted Data with Size-Locked Indexes
We investigate a simple but overlooked folklore approach for searching encrypted documents held at an untrusted service: Just stash an index (with unstructured encryption) at the service and download it for updating and searching. This approach is simple to deploy, enables rich search support beyond unsorted keyword lookup, requires no persistent client state, and (intuitively at least) provides excellent security compared with approaches like dynamic searchable symmetric encryption (DSSE). This work first shows that implementing this construct securely is more subtle than it appears, and that naive implementations with commodity indexes are insecure due to the leakage of the byte-length of the encoded index. We then develop a set of techniques for encoding indexes, called size-locking, that eliminates this leakage. Our key idea is to fix the size of indexes to depend only on features that are safe to leak. We further develop techniques for securely partitioning indexes into smaller pieces that are downloaded, trading leakage for large increases in performance in a measured way. We implement our systems and evaluate that they provide search quality matching plaintext systems, support for stateless clients, and resistance to damaging injection attacks.  more » « less
Award ID(s):
1704296
PAR ID:
10295886
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
USENIX Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We investigate a simple but overlooked folklore approach for searching encrypted documents held at an untrusted service: Just stash an index (with unstructured encryption) at the service and download it for updating and searching. This approach is simple to deploy, enables rich search support beyond unsorted keyword lookup, requires no persistent client state, and (intuitively at least) provides excellent security com- pared with approaches like dynamic searchable symmetric encryption (DSSE). This work first shows that implementing this construct securely is more subtle than it appears, and that naive implementations with commodity indexes are insecure due to the leakage of the byte-length of the encoded index. We then develop a set of techniques for encoding indexes, called size-locking, that eliminates this leakage. Our key idea is to fix the size of indexes to depend only on features that are safe to leak. We further develop techniques for securely partitioning indexes into smaller pieces that are downloaded, trading leakage for large increases in performance in a mea- sured way. We implement our systems and evaluate that they provide search quality matching plaintext systems, support for stateless clients, and resistance to damaging injection attacks. 
    more » « less
  2. Searchable Encryption (SE) has been extensively examined by both academic and industry researchers. While many academic SE schemes show provable security, they usually expose some query information (e.g., search patterns) to achieve high efficiency. However, several inference attacks have exploited such leakage, e.g., a query recovery attack can convert opaque query trapdoors to their corresponding keywords based on some prior knowledge. On the other hand, many proposed SE schemes require significant modification of existing applications, which makes them less practical, weak in usability, and difficult to deploy. In this paper, we introduce a secure and practical SE scheme with provable security strength for cloud applications, called IDCrypt, which improves the search efficiency and enhanced the security strength of SE using symmetric cryptography. We further point out the main challenges in securely searching on multiple indexes and sharing encrypted data between multiple users. To address the above issues, we propose a token-adjustment scheme to preserve the search functionality among multi-indexes, and a key sharing scheme which combines Identity-Based Encryption (IBE) and Public-Key Encryption (PKE). Our experimental results show that the overhead of IDCrypt is fairly low. 
    more » « less
  3. Dynamic Searchable Symmetric Encryption (DSSE) provides efficient techniques for securely searching and updating an encrypted database. However, efficient DSSE schemes leak some sensitive information to the server. Recent works have implemented forward and backward privacy as security properties to reduce the amount of information leaked during update operations. Many attacks have shown that leakage from search operations can be abused to compromise the privacy of client queries. However, the attack literature has not rigorously investigated techniques to abuse update leakage. In this work, we investigate update leakage under DSSE schemes with forward and backward privacy from the perspective of a passive adversary. We propose two attacks based on a maximum likelihood estimation approach, the UFID Attack and the UF Attack, which target forward-private DSSE schemes with no backward privacy and Level 2 backward privacy, respectively. These are the first attacks to show that it is possible to leverage the frequency and contents of updates to recover client queries. We propose a variant of each attack which allows the update leakage to be combined with search pattern leakage to achieve higher accuracy. We evaluate our attacks against a real-world dataset and show that using update leakage can improve the accuracy of attacks against DSSE schemes, especially those without backward privacy. 
    more » « less
  4. Abstract MotivationIn the past few years, researchers have proposed numerous indexing schemes for searching large datasets of raw sequencing experiments. Most of these proposed indexes are approximate (i.e. with one-sided errors) in order to save space. Recently, researchers have published exact indexes—Mantis, VariMerge and Bifrost—that can serve as colored de Bruijn graph representations in addition to serving as k-mer indexes. This new type of index is promising because it has the potential to support more complex analyses than simple searches. However, in order to be useful as indexes for large and growing repositories of raw sequencing data, they must scale to thousands of experiments and support efficient insertion of new data. ResultsIn this paper, we show how to build a scalable and updatable exact raw sequence-search index. Specifically, we extend Mantis using the Bentley–Saxe transformation to support efficient updates, called Dynamic Mantis. We demonstrate Dynamic Mantis’s scalability by constructing an index of ≈40K samples from SRA by adding samples one at a time to an initial index of 10K samples. Compared to VariMerge and Bifrost, Dynamic Mantis is more efficient in terms of index-construction time and memory, query time and memory and index size. In our benchmarks, VariMerge and Bifrost scaled to only 5K and 80 samples, respectively, while Dynamic Mantis scaled to more than 39K samples. Queries were over 24× faster in Mantis than in Bifrost (VariMerge does not immediately support general search queries we require). Dynamic Mantis indexes were about 2.5× smaller than Bifrost’s indexes and about half as big as VariMerge’s indexes. Availability and implementationDynamic Mantis implementation is available at https://github.com/splatlab/mantis/tree/mergeMSTs. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  5. null (Ed.)
    We introduce a new technique for indexing joins in encrypted SQL databases called partially precomputed joins which achieves lower leakage and bandwidth than those used in prior constructions. These techniques are incorporated into state-of-the-art structured encryption schemes for SQL data, yielding a hybrid indexing scheme with both partially and fully precomputed join indexes. We then introduce the idea of leakage-aware query planning by giving a heuristic that helps the client decide, at query time, which index to use so as to minimize leakage and stay below a given bandwidth budget. We conclude by simulating our constructions on real datasets, showing that our heuristic is accurate and that partially-precomputed joins perform well in practice. 
    more » « less