skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seed Cryopreservation, Germination, and Micropropagation of Eastern Turkeybeard, Xerophyllum asphodeloides (L.) Nutt.: A Threatened Species from the Southeastern United States
Xerophyllum asphodeloides (Xerophyllaceae), known as eastern turkeybeard, is an herbaceous perennial found in eastern North America. Due to decline and destruction of its habitat, several states rank X. asphodeloides as “Imperiled” to “Critically Imperiled”. Protocols for seed cryopreservation, in vitro germination, sustainable shoot micropropagation, shoot establishment in soil, and seed germination are presented. Seeds from two tested sources were viable after 20 months of cryopreservation. Germination of isolated embryos in vitro was necessary to overcome strong seed dormancy. Shoot multiplication and elongation occurred on ½ MS medium without PGRs. Shoots rooted in vitro without PGRs or with 0.5 mg/L NAA or after NAA rooting powder treatment and placement in potting mix. When planted in wet, peaty soil mixes, shoots grew for two months and then declined. When planted in a drier planting mix containing aged bark, most plants continued growth. In the field, plant survival was 73% after three growing seasons. Safeguarding this species both ex situ and in situ is possible and offers a successful approach to conservation. Whole seeds germinated after double dormancy was overcome by incubation under warm moist conditions for 12 weeks followed by 12 weeks cold at 4 °C and then warm.  more » « less
Award ID(s):
1655732
PAR ID:
10295889
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Plants
Volume:
10
Issue:
7
ISSN:
2223-7747
Page Range / eLocation ID:
1462
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nanofertilizer application is becoming a sustainable alternative for plants micronutrients supply. Seed nutrient priming before seeding reduces non- target dispersion; although, applying nanofertilizer in correct concentration must be narrowly chosen to prevent germination and development issues. Here, we evaluated corn seedlings development and germination after seed priming with Mn3O4 nanoparticle (NP), Mn3O4 bulk and MnCl2. Sterile seeds were soaked for 8hours in priming solutions of 0, 20, 40, 80 and 160mg L1 for each Mn sources. The seeds vigor and germination were evaluated after 7 days on germination paper. Root, shoot and total lengths were measured as well as root, shoot and total dry biomass. Compared to the control, the Mn3O4 NP and Mn3O4 bulk promoted beneficial effects. Mn3O4 NP seed-priming exhibited a concentration dependent profile in improving seedling growth, with greatest benefit around 20mg L1, pro- viding higher germination, vigor, dry biomass and length than control and the other source tested. Particle size plays an important role in the reactiv- ity of Mn3O4 NP. On the other hand, seeds primed with soluble source did not differ from the control. These findings support NP-seed priming as an alternative to delivery micronutrients. 
    more » « less
  2. The use of true potato seed (TPS) is fundamental to potato breeding and research, but can be hindered by poor germination and seed dormancy. TPS germination studies had focused mainly on seed treatment methods after seed extraction and not in combination with the seed extraction methods used. In potato, TPS extraction using water, using yeast fermentation or using sodium bicarbonate are common, but TPS extraction using dilute aqueous hydrochloric acid (HCl) followed by bleach treatment (3% sodium hypochlorite) had never been tested in potato even though this is standard practice for tomato seeds. Therefore, three seed extraction methods (water, 0.1 M HCl, and 0.8% yeast fermentation) in combination with three seed treatment methods (water, 1500 ppm GA3, and 3% sodium hypochlorite) were tested on diploid TPS at 1 week and 1 month after seed extraction. TPS treated with GA3 improved germination for both 1 week- and 1 month-old seeds, while TPS treated with 3% sodium hypochlorite only improved germination for 1 month-old seeds. This study shows that TPS extraction using water, yeast or HCl had no effect on germination, but supports the use of GA3 or bleach to promote TPS germination. 
    more » « less
  3. Abstract Seed dormancy in plants can have a significant impact on their ecology. Recent work by Rojas-Villa and Quijano-Abril (2023) classified the seed dormancy class in 14 plant species from the Andean forests of Colombia by using germination trials and several microscopy techniques to describe seed anatomy and morphology. The authors conclude thatCecropiaspecies have both physical and physiological dormancy (of which they call physiophysical dormancy) based on seed morphology and mean germination times of over 30 days. Here, we present seed permeability and germination data from neotropical pioneer tree species:Ochroma pyramidale,Cecropia longipes, andCecropia insignis, as well asCecropia peltata(present in Rojas-Villa and Quijano-Abril, 2023), to demonstrate thatCecropiaspecies do not exhibit dormancy and also have high levels of seed permeability. We find that the mean germination time for all threeCecropiaspecies in our study was less than 30 days. This suggests a need for reporting the conditions in which germination trials take place to allow for comparability among studies and using seed permeability tests to accurately identify the physical dormancy class of seeds. Further, we present data from the literature that suggests that dormancy is not a requirement for seed persistence in the seed bank. 
    more » « less
  4. Abstract There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often‐used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero‐inflation and overdispersion in data from 13 germination trials of soil‐stored seeds ofSchoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival: zero‐inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero‐inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result: most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil‐stored natural archives which is a key aspect of using dormant propagules in eco‐evolutionary studies. 
    more » « less
  5. These data were collected to assess how seed availability and site limitations affect conifer germination across species distributions. Our study focused on areas above alpine treeline where subalpine tree species must migrate to track movement of suitable climate, but we also included sites in the core and at the lower ecotone of subalpine forests. We monitored seed availability and germination of new seedlings for four subalpine tree species from 2015-present at Niwot Ridge, Colorado, USA. Seed availability was collected in 66-95 seed traps in 14-17 sites (6-12 traps per site; see data for count per site), depending on year. In the lab, seeds were counted by species. In the field, new germinants were counted by species 3-5 weeks after snow disappearance (i.e., peak germination) and again in late September from 2015 to 2018 only. Only one census of new germinants was conducted from 2019 to 2023. New germinants from prior years were censused in subsequent summers. 
    more » « less