skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint inversion for 1-D crustal seismic S - and P -wave velocity structures with interfaces and its application to the Wabash Valley Seismic Zone
SUMMARY Interfaces are important part of Earth’s layering structure. Here, we developed a new model parametrization and iterative linearized inversion method that determines 1-D crustal velocity structure using surface wave dispersion, teleseismic P-wave receiver functions and Ps and PmP traveltimes. Unlike previous joint inversion methods, the new model parametrization includes interface depths and layer Vp/Vs ratios so that smoothness constraint can be conveniently applied to velocities of individual layers without affecting the velocity discontinuity across the interfaces. It also allows adding interface-related observation such as traveltimes of Ps and PmP in the joint inversion to eliminate the trade-off between interface depth and Vp/Vs ratio and therefore to reduce the uncertainties of results. Numerical tests show that the method is computationally efficient and the inversion results are robust and independent of the initial model. Application of the method to a dense linear array across the Wabash Valley Seismic Zone (WVSZ) produced a high-resolution crustal image in this seismically active region. The results show a 51–55-km-thick crust with a mid-crustal interface at 14–17 km. The crustal Vp/Vs ratio varies from 1.69 to 1.90. There are three pillow-like, ∼100 km apart high-velocity bodies sitting at the base of the crust and directly above each of them are a low-velocity anomaly in the middle crust and a high-velocity anomaly in the upper crust. They are interpreted to be produced by mantle magmatic intrusions and remelting during rifting events in the end of the Precambrian. The current diffuse seismicity in the WVSZ might be rooted in this ancient distributed rifting structure.  more » « less
Award ID(s):
1661519
PAR ID:
10296010
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
226
Issue:
1
ISSN:
0956-540X
Page Range / eLocation ID:
47 to 55
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Santorini volcano in the South Aegean Volcanic Arc has a detailed history of ongoing volcanic and seismic activity, making it a prime location for studying magma storage and transport at arc volcanoes. The shallow magmatic system (<5 km depth) is well constrained by geophysical studies, but the deeper crustal structure is not. Located 15 km NE of Santorini, the Kolumbo seamount is also an active edifice, with consistently more seismicity and hydrothermal venting than Santorini. Geochemical studies indicate that Santorini and Kolumbo are fed by separate mantle and crustal magma sources, but prior seismic studies suggest otherwise (Dimitriadis et al, 2010; McVey et al, 2020). This study addresses the nature of lower-crustal magma structure beneath arc volcanoes and whether evolved volcanoes and nearby vents are connected through their plumbing. Tomographic inversion of P-wave Moho reflection (PmP) and turning P-wave (Pg) traveltimes is used to create 3-D models of Moho depth and P-wave velocity (Vp) down to depths of ~25 km. The PROTEUS experiment provides an exceptionally dense and large aperture traveltime dataset from an amphibious array of ~150 seismometers and ~14,000 active marine sources. The data are ~33,000 manually picked PmP arrivals and ~256,000 Pg arrivals from existing studies. Results show a low Vp anomaly extending from the Moho to the surface. This anomaly starts at the base of the crust under the NW Santorini caldera and extends up to the east. It is most pronounced at 10-15 km depth, where it is offset from both Santorini and Kolumbo. Limited resolution prevents imaging of a connection between this mid-crustal anomaly and the known shallow magma storage region under the Santorini caldera. A high-velocity core beneath Santorini is not found, a feature interpreted at other volcanoes as a cooled intrusive complex. Because no additional low Vp anomalies are found in the lower crust, we infer that a common mantle source and mid-crustal plumbing system is actively feeding both Santorini and Kolumbo. The spatial offset and elongated nature of magma storage implies a complex relationship between evolving magmatic structures and tectonics. 
    more » « less
  2. Abstract Accurately determining the seismic structure of the continental deep crust is crucial for understanding its geological evolution and continental dynamics in general. However, traditional tools such as surface waves often face challenges in solving the trade‐offs between elastic parameters and discontinuities. In this work, we present a new approach that combines two established inversion techniques, receiver function H‐κstacking and joint inversion of surface wave dispersion and receiver function waveforms, within a Bayesian Monte Carlo (MC) framework to address these challenges. Demonstrated by synthetic tests, the new method greatly reduces trade‐offs between critical parameters, such as the deep crustal Vs, Moho depth, and crustal Vp/Vs ratio. This eliminates the need for assumptions regarding crustal Vp/Vs ratios in joint inversion, leading to a more accurate outcome. Furthermore, it improves the precision of the upper mantle velocity structure by reducing its trade‐off with Moho depth. Additional notes on the sources of bias in the results are also included. Application of the new approach to USArray stations in the Northwestern US reveals consistency with previous studies and identifies new features. Notably, we find elevated Vp/Vs ratios in the crystalline crust of regions such as coastal Oregon, suggesting potential mafic composition or fluid presence. Shallower Moho depth in the Basin and Range indicates reduced crustal support to the elevation. The uppermost mantle Vs, averaging 5 km below Moho, aligns well with the Pn‐derived Moho temperature variations, offering the potential of using Vs as an additional constraint to Moho temperature and crustal thermal properties. 
    more » « less
  3. Abstract Extensive Mesozoic rifting along the eastern North American margin formed a series of basins, including the Hartford basin in southern New England. Nearly contemporaneously, the geographically widespread Central Atlantic Magmatic Province (CAMP) was emplaced. The Hartford basin provides an ideal place to investigate the roles of rifting and magmatism in crustal evolution, as the integration of the dense SEISConn array and other seismic networks provides excellent station coverage. Using full‐wave ambient noise tomography, we constructed a detailed crustal model, revealing a low‐velocity (Vs = 3.3–3.6 km/s) midcrust and a high‐velocity (Vs = 4.0–4.5 km/s) lower crust beneath the Hartford basin. The low‐velocity midcrust may correspond to a layer of radial anisotropy due to extension and crustal thinning during rifting. The high‐velocity crustal root likely represents the remnant of magmatic underplating resulting from the CAMP event. Our findings shed light on crustal modification associated with supercontinental breakup, rifting, extension, and magmatism. 
    more » « less
  4. Abstract We present two new seismic velocity models for Alaska from joint inversions of body-wave and ambient-noise-derived surface-wave data, using two different methods. Our work takes advantage of data from many recent temporary seismic networks, including the Incorporated Research Institutions for Seismology Alaska Transportable Array, Southern Alaska Lithosphere and Mantle Observation Network, and onshore stations of the Alaska Amphibious Community Seismic Experiment. The first model primarily covers south-central Alaska and uses body-wave arrival times with Rayleigh-wave group-velocity maps accounting for their period-dependent lateral sensitivity. The second model results from direct inversion of body-wave arrival times and surface-wave phase travel times, and covers the entire state of Alaska. The two models provide 3D compressional- (VP) and shear-wave velocity (VS) information at depths ∼0–100  km. There are many similarities as well as differences between the two models. The first model provides a clear image of the high-velocity subducting plate and the low-velocity mantle wedge, in terms of the seismic velocities and the VP/VS ratio. The statewide model provides clearer images of many features such as sedimentary basins, a high-velocity anomaly in the mantle wedge under the Denali volcanic gap, low VP in the lower crust under Brooks Range, and low velocities at the eastern edge of Yakutat terrane under the Wrangell volcanic field. From simultaneously relocated earthquakes, we also find that the depth to the subducting Pacific plate beneath southern Alaska appears to be deeper than previous models. 
    more » « less
  5. Abstract We present models of compressional and shear velocity structure of the oceanic sediments and upper crust surrounding the Hawaiian islands. The models were derived from analysis of seafloor compliance data and measurements of Ps converted phases originating at the sediment‐bedrock interface. These data were estimated from continuous broadband ocean bottom seismometer acceleration and pressure records collected during the Plume‐Lithosphere Undersea Mantle Experiment, an amphibious array of wideband and broadband instruments with an aperture of over 1,000 km. Our images result from a joint inversion of compliance and Ps delay data using a nonlinear inversion scheme whereby deviation from a priori constraints is minimized. In our final model, sediment thickness increases from 50 m at distal sites to over 1.5 km immediately adjacent to the islands. The sedimentary shear velocity profiles exhibit large regional variations. While sedimentary structure accounts for the majority of the compliance signal, we infer variations in shear velocity in the uppermost bedrock on the order of ±5%. We also require relatively high values of Poisson's ratio in the uppermost crust. Lower crustal velocities are generally seen to the north and west of the islands but do not appear well correlated with the Hawaiian Swell bathymetry. A region of strong low velocity anomalies to the northeast of Hawaii may be associated with the Molokai fracture zone. 
    more » « less