skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Environmental, evolutionary, and ecological drivers of slow growth in deep-sea demersal teleosts
The deep sea (>500 m ocean depth) is the largest global habitat, characterized by cool temperatures, low ambient light, and food-poor conditions relative to shallower waters. Deep-sea teleosts generally grow more slowly than those inhabiting shallow water. However, this is a generalization, and even amongst deep-sea teleosts, there is a broad continuum of growth rates. The importance of potential drivers of growth rate variability amongst deep-sea species, such as temperature, food availability, oxygen concentration, metabolic rate, and phylogeny, have yet to be fully evaluated. We present a meta-analysis in which age and size data were collected for 53 species of teleosts whose collective depth ranges span from surface waters to 4000 m. We calculated growth metrics using both calendar and thermal age, and compared them with environmental, ecological, and phylogenetic variables. Temperature alone explained up to 30% of variation in the von Bertalanffy growth coefficient ( K , yr -1 ), and 21% of the variation in the average annual increase in mass (AIM, %), a metric of growth prior to maturity. After correcting for temperature effects, depth was still a significant driver of growth, explaining up to 20 and 10% of the remaining variation in K and AIM, respectively. Oxygen concentration also explained ~11% of remaining variation in AIM following temperature correction. Relatively minor amounts of variation may be explained by food availability, phylogeny, and the locomotory mode of the teleosts. We also found strong correlation between growth and metabolic rate, which may be an underlying driver also related to temperature, depth, and other factors, or the 2 parameters may simply covary as a result of being linked by evolutionary pressures. Evaluating the influence of ecological and/or environmental drivers of growth is a vital step in understanding both the evolution of life history parameters across the depth continuum as well as their implications for species’ resilience to increasing anthropogenic stressors.  more » « less
Award ID(s):
1829612 1829519
PAR ID:
10296031
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
658
ISSN:
0171-8630
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The maximum intrinsic rate of population increase (rmax) represents a population's maximum capacity to replace itself and is central to fisheries management and conservation. Species with lowerrmaxtypically have slower life histories compared to species with faster life histories and higherrmax. Here, we posit that metabolic rate is related to the fast–slow life history continuum and the connection may be stronger for maximum metabolic rate and aerobic scope compared to resting metabolic rate. Specifically, we ask whether variation inrmaxor any of its component life‐history traits – age‐at‐maturity, maximum age, and annual reproductive output – explain variation in resting and maximum metabolic rates and aerobic scope across 84 shark and teleost species, while accounting for the effects of measurement temperature, measurement body mass, ecological lifestyle, and evolutionary history. Overall, we find a strong connection between metabolic rate and the fast‐slow life history continuum, such that species with faster population growth (higherrmax) generally have higher maximum metabolic rates and broader aerobic scopes. Specifically,rmaxis more important in explaining variation in maximum metabolic rate and aerobic scope compared to resting metabolic rate, which is best explained by age‐at‐maturity (out of the life history traits examined). In conclusion, teleosts and sharks share a common fast–slow physiology/life history continuum, with teleosts generally at the faster end and sharks at the slower end, yet with considerable overlap. Our work improves our understanding of the diversity of fish life histories and may ultimately improve our understanding of intrinsic sensitivity to overfishing. 
    more » « less
  2. Abstract Large‐scale shifts in marine species biogeography have been a notable impact of climate change. An effective explanation of what drives these species shifts, as well as accurate predictions of where they might move, is crucial to effectively managing these natural resources and conserving biodiversity. While temperature has been implicated as a major driver of these shifts, physiological processes suggest that oxygen, prey, and other factors should also play important roles. We expanded upon previous temperature‐based distribution models by testing whether oxygen, food web productivity, salinity, and scope for metabolic activity (the Metabolic Index) better explained the changing biogeography of Black Sea Bass (Centropristis striata) in the Northeast US. This species has been expanding further north over the past 15 years. We found that oxygen improved model performance beyond a simple consideration of temperature (ΔAIC = 799, ΔTSS = 0.015), with additional contributions from prey and salinity. However, the Metabolic Index did not substantially increase model performance relative to temperature and oxygen (ΔAIC = 0.63, ΔTSS = 0.0002). Marine species are sensitive to oxygen, and we encourage researchers to use ocean biogeochemical hindcast and forecast products to better understand marine biogeographic changes. 
    more » « less
  3. The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 8C (15 mM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (32 mM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 8C. Euphausia diomedeae survived 1.6 kPa PO2 (22 mM O2) at 228C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 8C, n¼2) and lactate accumulation (1.1 kPa, 10 8C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by 49–64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change. 
    more » « less
  4. Abstract Alterations of marine species’ ranges with climate change are often attributed to oxygen limitation in warming oceans. Here we report unique metabolic temperature sensitivities for the myriad of vertically migrating oceanic species that daily cross depth-related gradients in temperature and oxygen. In these taxa, selection favours high metabolic activity for predator–prey interactions in warm shallow water and hypoxia tolerance in the cold at depth. These diverging selective pressures result in thermal insensitivity of oxygen supply capacity and enhanced thermal sensitivity of active metabolic rate. Aerobic scope is diminished in the cold, well beyond thermodynamic influences and regardless of ambient oxygen levels, explaining the native distributions of tropical migrators and their recent range expansions following warming events. Cold waters currently constitute an energetic barrier to latitudinal range expansion in vertical migrators. As warming due to climate change approaches, and eventually surpasses, temperatures seen during past warming events, this energetic barrier will be relieved. 
    more » « less
  5. The Mississippi River watershed drains 40% of the continental United States, and the tremendous primary productivity in the adjacent north-central Gulf of Mexico has created one of the most extensive dead zones on Earth. In contrast, smaller watersheds deliver fewer nutrients to the northeastern gulf, and consequently, productivity is limited and hypoxia is uncommon. How has variation in primary productivity, oxygen availability, and sea-surface temperature affected coastal food webs? Here, we investigate environmental controls on the size of molluscan predators and prey in the northern Gulf of Mexico using Holocene death assemblages. Linear mixed models indicate that bivalve size and the frequency of drilling predation are affected by dissolved oxygen concentrations; drilling frequency declines with declining oxygen, whereas bivalve size increases. In contrast, sea-surface temperature is positively associated with the size of molluscan predators and prey. Net primary productivity contributes relatively little to predator or prey size, and predator-to-prey size ratios do not vary consistently with environmental conditions across the northern gulf. Larger bivalves in areas of oxygen limitation may be due to decreased predation pressure and, consequently, greater prey longevity. The larger size of bivalves and predatory gastropods in warmer waters may reflect enhanced growth under these conditions, provided dissolved oxygen concentrations exceed a minimum threshold. Holocene death assemblages can be used to test long-standing hypotheses regarding environmental controls on predator−prey body-size distributions through geologic time and provide baselines for assessing the ongoing effects of anthropogenic eutrophication and warming on coastal food webs. 
    more » « less