This paper investigates the role of text in visualizations, specifically the impact of text position, semantic content, and biased wording. Two empirical studies were conducted based on two tasks (predicting data trends and appraising bias) using two visualization types (bar and line charts). While the addition of text had a minimal effect on how people perceive data trends, there was a significant impact on how biased they perceive the authors to be. This finding revealed a relationship between the degree of bias in textual information and the perception of the authors' bias. Exploratory analyses support an interaction between a person's prediction and the degree of bias they perceived. This paper also develops a crowdsourced method for creating chart annotations that range from neutral to highly biased. This research highlights the need for designers to mitigate potential polarization of readers' opinions based on how authors' ideas are expressed.
more »
« less
Accessible Visualization via Natural Language Descriptions: A Four-Level Model of Semantic Content
Natural language descriptions sometimes accompany visualizations to better communicate and contextualize their insights, and to improve their accessibility for readers with disabilities. However, it is difficult to evaluate the usefulness of these descriptions, and how effectively they improve access to meaningful information, because we have little understanding of the semantic content they convey, and how different readers receive this content. In response, we introduce a conceptual model for the semantic content conveyed by natural language descriptions of visualizations. Developed through a grounded theory analysis of 2,147 sentences, our model spans four levels of semantic content: enumerating visualization construction properties (e.g., marks and encodings); reporting statistical concepts and relations (e.g., extrema and correlations); identifying perceptual and cognitive phenomena (e.g., complex trends and patterns); and elucidating domain-specific insights (e.g., social and political context). To demonstrate how our model can be applied to evaluate the effectiveness of visualization descriptions, we conduct a mixed-methods evaluation with 30 blind and 90 sighted readers, and find that these reader groups differ significantly on which semantic content they rank as most useful. Together, our model and findings suggest that access to meaningful information is strongly reader-specific, and that research in automatic visualization captioning should orient toward descriptions that more richly communicate overall trends and statistics, sensitive to reader preferences. Our work further opens a space of research on natural language as a data interface coequal with visualization.
more »
« less
- Award ID(s):
- 1900991
- PAR ID:
- 10296065
- Date Published:
- Journal Name:
- IEEE transactions on visualization and computer graphics
- ISSN:
- 1941-0506
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Annotations are an essential part of data analysis and communication in visualizations, which focus a readers attention on critical visual elements (e.g. an arrow that emphasizes a downward trend in a bar chart). Annotations enhance comprehension, mental organization, memorability, user engagement, and interaction and are crucial for data externalization and exploration, collaborative data analysis, and narrative storytelling in visualizations. However, we have identified a general lack of understanding of how people annotate visualizations to support effective communication. In this study, we evaluate how visualization students annotate grouped bar charts when answering high-level questions about the data. The resulting annotations were qualitatively coded to generate a taxonomy of how they leverage different visual elements to communicate critical information. We found that the annotations used significantly varied by the task they were supporting and that whereas several annotation types supported many tasks, others were usable only in special cases. We also found that some tasks were so challenging that ensembles of annotations were necessary to support the tasks sufficiently. The resulting taxonomy of approaches provides a foundation for understanding the usage of annotations in broader contexts to help visualizations achieve their desired message.more » « less
-
Trust is fundamental to effective visual data communication between the visualization designer and the reader. Although personal experience and preference influence readers’ trust in visualizations, visualization designers can leverage design techniques to create visualizations that evoke a "calibrated trust," at which readers arrive after critically evaluating the information presented. To systematically understand what drives readers to engage in "calibrated trust," we must first equip ourselves with reliable and valid methods for measuring trust. Computer science and data visualization researchers have not yet reached a consensus on a trust definition or metric, which are essential to building a comprehensive trust model in human-data interaction. On the other hand, social scientists and behavioral economists have developed and perfected metrics that can measure generalized and interpersonal trust, which the visualization community can reference, modify, and adapt for our needs. In this paper, we gather existing methods for evaluating trust from other disciplines and discuss how we might use them to measure, define, and model trust in data visualization research. Specifically, we discuss quantitative surveys from social sciences, trust games from behavioral economics, measuring trust through measuring belief updating, and measuring trust through perceptual methods. We assess the potential issues with these methods and consider how we can systematically apply them to visualization research.more » « less
-
Online data visualizations play an important role in informing public opinion but are often inaccessible to screen reader users. To address the need for accessible data representations on the web that provide direct, multimodal, and up-to-date access to the data, we investigate audio data narratives –which combine textual descriptions and sonification (the mapping of data to non-speech sounds). We conduct two co-design workshops with screen reader users to define design principles that guide the structure, content, and duration of a data narrative. Based on these principles and relevant auditory processing characteristics, we propose a dynamic programming approach to automatically generate an audio data narrative from a given dataset. We evaluate our approach with 16 screen reader users. Findings show with audio narratives, users gain significantly more insights from the data. Users describe data narratives help them better extract and comprehend the information in both the sonification and description.more » « less
-
Data visualization has become an increasingly important means of effective data communication and has played a vital role in broadcasting the progression of COVID-19. Accessible data representations, on the other hand, have lagged behind, leaving areas of information out of reach for many blind and visually impaired (BVI) users. In this work, we sought to understand (1) the accessibility of current implementations of visualizations on the web; (2) BVI users’ preferences and current experiences when accessing data-driven media; (3) how accessible data representations on the web address these users’ access needs and help them navigate, interpret, and gain insights from the data; and (4) the practical challenges that limit BVI users’ access and use of data representations. To answer these questions, we conducted a mixed-methods study consisting of an accessibility audit of 87 data visualizations on the web to identify accessibility issues, an online survey of 127 screen reader users to understand lived experiences and preferences, and a remote contextual inquiry with 12 of the survey respondents to observe how they navigate, interpret and gain insights from accessible data representations. Our observations during this critical period of time provide an understanding of the widespread accessibility issues encountered across online data visualizations, the impact that data accessibility inequities have on the BVI community, the ways screen reader users sought access to data-driven information and made use of online visualizations to form insights, and the pressing need to make larger strides towards improving data literacy, building confidence, and enriching methods of access. Based on our findings, we provide recommendations for researchers and practitioners to broaden data accessibility on the web.more » « less
An official website of the United States government

