We report on a dendronized bis‐urea macrocycle
- Award ID(s):
- 1828064
- NSF-PAR ID:
- 10296076
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 26
- Issue:
- 13
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 4097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 1 self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development. -
Abstract We report on a dendronized bis‐urea macrocycle
1 self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development. -
The urea oxidation reaction (UOR) is a possible solution to solve the world’s energy crisis. Fuel cells have been used in the UOR to generate hydrogen with a lower potential compared to water splitting, decreasing the costs of energy production. Urea is abundantly present in agricultural waste and in industrial and human wastewater. Besides generating hydrogen, this reaction provides a pathway to eliminate urea, which is a hazard in the environment and to people’s health. In this study, nanosheets of CuCo2O4 grown on nickel foam were synthesized as an electrocatalyst for urea oxidation to generate hydrogen as a green fuel. The synthesized electrocatalyst was characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electroactivity of CuCo2O4 towards the oxidation of urea in alkaline solution was evaluated using electrochemical measurements. Nanosheets of CuCo2O4 grown on nickel foam required the potential of 1.36 V in 1 M KOH with 0.33 M urea to deliver a current density of 10 mA/cm2. The CuCo2O4 electrode was electrochemically stable for over 15 h of continuous measurements. The high catalytic activities for the hydrogen evolution reaction make the CuCo2O4 electrode a bifunctional catalyst and a promising electroactive material for hydrogen production. The two-electrode electrolyzer demanded a potential of 1.45 V, which was 260 mV less than that for the urea-free counterpart. Our study suggests that the CuCo2O4 electrode can be a promising material as an efficient UOR catalyst for fuel cells to generate hydrogen at a low cost.more » « less
-
Abstract Catalysis of
O ‐atom transfer (OAT) reactions is a characteristic of both natural (enzymatic) and synthetic molybdenum‐oxo and ‐peroxo complexes. These reactions can employ a variety of terminal oxidants, e. g. DMSO,N ‐oxides, and peroxides, etc., but rarely molecular oxygen. Here we demonstrate the ability of a set of Schiff‐base‐MoO2complexes (cy‐salen)MoO2(cy‐salen=N,N’ ‐cyclohexyl‐1,2‐bis‐salicylimine) to catalyze the aerobic oxidation of PPh3. We also report the results of a DFT computational investigation of the catalytic pathway, including the identification of energetically accessible intermediates and transition states, for the aerobic oxidation of PMe3. Starting from the dioxo species, (cy‐salen)Mo(VI)O2(1 ), key reaction steps include: 1) associative addition of PMe3to an oxo‐O to give LMo(IV)(O)(OPMe3) (2 ); 2) OPMe3dissociation from2 to produce mono‐oxo complex (cy‐salen)Mo(IV)O (3 ); 3) stepwise O2association with3 via superoxo species (cy‐salen)Mo(V)(O)(η1‐O2) (4 ) to form the oxo‐peroxo intermediate (cy‐salen)Mo(VI)(O)(η2‐O2) (5 ); 4) theO ‐transfer reaction of PMe3with oxo‐peroxo species5 at the oxo‐group, rather than the peroxo unit leading, after OPMe3dissociation, to a monoperoxo species, (cy‐salen)Mo(IV)(η2‐O2) (7 ); and 5) regeneration of the dioxo complex (cy‐salen)Mo(VI)O2(1 ) from the monoperoxo triplet3 7 or singlet1 7 by a concerted, asynchronous electronic isomerization. An alternative pathway for recycling of the oxo‐peroxo species5 to the dioxo‐Mo1 via a bimetallic peroxo complex LMo(O)‐O−O‐Mo(O)L8 is determined to be energetically viable, but is unlikely to be competitive with the primary pathway for aerobic phosphine oxidation catalyzed by1 . -
Copper(I) halides are often added to olefin metathesis reactions to inhibit catalyst degradation, control product isomerization, enhance catalyst activation, or facilitate catalyst dimerization. In each of these examples, the copper salt is presumed to operate as an independent species, separate from the ruthenium center. We have discovered, however, that certain copper salts can form complexes with the ruthenium catalyst itself, forming hetero-bimetallic copper-ruthenium olefin metathesis catalysts. We confirmed the formation of two complexes through single-crystal X-ray crystallography and NMR spectroscopy. The crystal structure revealed the presence of a four-member ring containing ruthenium, carbon, copper, and chlorine or bromine. The hetero-bimetallic catalyst displayed higher latency and lower activity in the ring-opening metathesis polymerization (ROMP) of norbornene compared to analogous monometallic catalysts. For example, norbornene polymerization catalyzed by the monometallic complex reached 80 % conversion after 4 h, but only 12% conversion when catalyzed by the hetero-bimetallic copper-ruthenium complex under the same conditions. Conversion increased to 63 % when the temperature increased to 50 °C for 1 h, indicating that the bimetallic complex retains activity but requires a higher temperature to activate. The formation of these copper-ruthenium bimetallic complexes suggests the possibility of multi-metallic olefin metathesis catalysts, potentially with different activity and properties than their traditional monometallic counterparts.more » « less