skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Throwing MUD into the FOG: Defending IoT and Fog by expanding MUD to Fog network
Manufacturer Usage Description (MUD) is a proposed IETF standard enabling local area networks (LAN) to automatically configure their access control when adding a new IoT device based on the recommendations provided for that device by the manufacturer. MUD has been proposed as an isolation-based defensive mechanism with a focus on devices in the home, where there is no dedicated network administrator. In this paper, we describe the efficacy of MUD for a generic IoT device under different threat scenarios in the context of the Fog. We propose a method to use rate limiting to prevent end devices from participating in denial of service attacks (DDoS), including against the Fog itself. We illustrate our assumptions by providing a possible real world example and describe the benefits for MUD in the Fog for various stakeholders.  more » « less
Award ID(s):
1916635
PAR ID:
10296087
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
HotEdge: A Usenix ATC Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    . Manufacturer Usage Description (MUD) is an Internet Engineering Task Force (IETF) standard designed to protect IoT devices and networks by creating an out-of-the-box access control list for an IoT device. Access control list of each device is defined in its MUD-File and may contain possibly hundreds of access control rules. As a result, reading and validating these files is a challenge; and determining how multiple IoT devices interact is difficult for the developer and infeasible for the consumer. To address this we introduce the MUD-Visualizer to provide a visualization of any number of MUD-Files. MUD-Visualizer is designed to enable developers to produce correct MUD-Files by providing format correction, integrating them with other MUD-Files, and identifying conflicts through visualization. MUD-Visualizer is scalable and its core task is to merge and illustrate ACEs for multiple devices; both within and beyond the local area network. MUD-Visualizer is made publicly available and can be found in GitHub. 
    more » « less
  2. null (Ed.)
    Secure installation of Internet of Things (IoT) devices requires configuring access control correctly for each device. In order to enable correct configuration Manufacturer Usage Description (MUD) has been developed by Internet Engineering Task Force (IETF) to automate the protection of IoT devices by micro-segmentation using dynamic access control lists. The protocol defines a conceptually straightforward method to implement access control upon installation by providing a list of every authorized access for each device. This access control list may contain a few rules or hundreds of rules for each device. As a result, validating these rules is a challenge. In order to make the MUD standard more usable for developers, system integrators, and network operators, we report on an interactive system called MUD-Visualizer that visualizes the files containing these access control rules. We show that, unlike manual analysis, the level of the knowledge and experience does not affect the accuracy of the analysis when MUD-Visualizer is used, indicating that the tool is effective for all participants in our study across knowledge and experience levels. 
    more » « less
  3. null (Ed.)
    With distributed communication, computation, and storage resources close to end users/devices, fog computing (FC) makes it very promising to develop cognitive portable ground penetrating radars (GPRs) operating intelligently and adaptively under varying sensing conditions. However both strict performance requirement and tradeoffs between communication and computation pose significant challenges. This paper presents a fog computing framework for cognitive portable GPRs. Specifically, the system architecture of an FC-enabled cognitive portable GPR is developed. Based on the identification of various involved computation tasks, an offloading policy was proposed to determine whether computation tasks should be executed locally or offloaded to the fog server. Experimental results show the efficacy of the proposed methods. The framework also provides insight into the design of cognitive Internet of things (IoT) supported by fog computing. 
    more » « less
  4. null (Ed.)
    In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample computing power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes - CIAA and STRIDE - to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less
  5. In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample com- puting power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes – CIAA and STRIDE – to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less