skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coverage Path Planning for Mapping of Underwater Structures
This paper addresses the problem of the coverage path planning in a 3D environment for surveying underwater structures. We propose to use the navigation strategy that a human diver will execute when circumnavigating around a region of interest, in particular when collecting data from a shipwreck. In contrast to the previous methods in the literature, we are aiming to perform coverage in completely unknown environment with some initial prior information. Our proposed method uses convolutional neural networks to learn the control commands based on the visual input. Preliminary results and a detailed overview of the proposed method are discussed.  more » « less
Award ID(s):
2024741
PAR ID:
10296203
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Global Oceans 2020: Singapore – U.S. Gulf Coast
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This work proposes vision-only navigation strategies for an autonomous underwater robot. This approach is a step towards solving the coverage path planning problem in a 3-D environment for surveying underwater structures. Given the challenging conditions of the underwater domain, it is very complicated to obtain accurate state estimates reliably. Consequently, it is a great challenge to extend known path planning or coverage techniques developed for aerial or ground robot controls. In this work, we are investigating a navigation strategy utilizing only vision to assist in covering a complex underwater structure. We propose to use a navigation strategy akin to what a human diver will execute when circumnavigating around a region of interest, in particular when collecting data from a shipwreck. The focus of this article is a step towards enabling the autonomous operation of lightweight robots near underwater wrecks in order to collect data for creating photo-realistic maps and volumetric 3-D models while at the same time avoiding collisions. The proposed method uses convolutional neural networks to learn the control commands based on the visual input. We have demonstrated the feasibility of using a system based only on vision to learn specific strategies of navigation with 80% accuracy on the prediction of control command changes. Experimental results and a detailed overview of the proposed method are discussed. 
    more » « less
  2. Test coverage is a critical aspect of the software development process, aiming for overall confidence in the product. When considering cloud-native systems, testing becomes complex, as it becomes necessary to deal with multiple distributed microservices that are developed by different teams and may change quite rapidly. In such a dynamic environment, it is important to track test coverage. This is especially relevant for end-to-end (E2E) and API testing, as these might be developed by teams distinct from microservice developers. Moreover, indirection exists in E2E, where the testers may see the user interface but not know how comprehensive the test suits are. To ensure confidence in health checks in the system, mechanisms and instruments are needed to indicate the test coverage level. Unfortunately, there is a lack of such mechanisms for cloud-native systems. This manuscript introduces test coverage metrics for evaluating the extent of E2E and API test suite coverage for microservice endpoints. It elaborates on automating the calculation of these metrics with access to microservice codebases and system testing traces, delves into the process, and offers feedback with a visual perspective, emphasizing test coverage across microservices. To demonstrate the viability of the proposed approach, we implement a proof-of-concept tool and perform a case study on a well-established system benchmark assessing existing E2E and API test suites with regard to test coverage using the proposed endpoint metrics. The results of endpoint coverage reflect the diverse perspectives of both testing approaches. API testing achieved 91.98% coverage in the benchmark, whereas E2E testing achieved 45.42%. Combining both coverage results yielded a slight increase to approximately 92.36%, attributed to a few endpoints tested exclusively through one testing approach, not covered by the other. 
    more » « less
  3. Sensor coverage is the critical multi-robot problem of maximizing the detection of events in an environment through the deployment of multiple robots. Large multi-robot systems are often composed of simple robots that are typically not equipped with a complete set of sensors, so teams with comprehensive sensing abilities are required to properly cover an area. Robots also exhibit multiple forms of relationships (e.g., communication connections or spatial distribution) that need to be considered when assigning robot teams for sensor coverage. To address this problem, in this paper we introduce a novel formulation of sensor coverage by multi-robot systems with heterogeneous relationships as a graph representation learning problem. We propose a principled approach based on the mathematical framework of regularized optimization to learn a unified representation of the multi-robot system from the graphs describing the heterogeneous relationships and to identify the learned representation’s underlying structure in order to assign the robots to teams. To evaluate the proposed approach, we conduct extensive experiments on simulated multi-robot systems and a physical multi-robot system as a case study, demonstrating that our approach is able to effectively assign teams for heterogeneous multi-robot sensor coverage. 
    more » « less
  4. Summary This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds for survival times with censored data. We build on recent work by Candès et al. (2023), whose approach first subsets the data to discard any data points with early censoring times and then uses a reweighting technique, namely, weighted conformal inference (Tibshirani et al., 2019), to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to lower predictive bounds that are less conservative and give more accurate information. We show that in the Type-I right-censoring setting, if either the censoring mechanism or the conditional quantile of the survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate lower predictive bounds for users’ active times on a mobile app. 
    more » « less
  5. In this work, we present a novel method for constructing a topological map of biological hotspots in an aquatic environment using a Fast Marching-based Voronoi segmentation. Using this topological map, we develop a closed form solution to the scheduling problem for any single path through the graph. Searching over the space of all paths allows us to compute a maximally informative path that traverses a subset of the hotspots, given some budget. Using a greedy-coverage algorithm we can then compute an informative path. We evaluate our method in a set of simulated trials, both with randomly generated environments and a real-world environment. In these trials, we show that our method produces a topological graph which more accurately captures features in the environment than standard thresholding techniques. Additionally, We show that our method can improve the performance of a greedy-coverage algorithm in the informative path planning problem by guiding it to different informative areas to help it escape from local maxima. 
    more » « less