skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elimination of transforming activity and gene degradation during UV and UV/H 2 O 2 treatment of plasmid-encoded antibiotic resistance genes
To better understand the elimination of transforming activity of antibiotic resistance genes (ARGs), this study investigated the deactivation of transforming activity of an ARG (in Escherichia coli as a host) and ARG degradation (according to quantitative PCR [qPCR] with different amplicon sizes) during UV (254 nm) and UV/H 2 O 2 treatments of plasmid pUC19 containing an ampicillin resistance gene ( amp R ). The required UV fluence for each log 10 reduction of the transforming activity during UV treatment was ∼37 mJ cm −2 for both extra- and intra-cellular pUC19 (the latter within E. coli ). The resulting fluence-based rate constant ( k ) of ∼6.2 × 10 −2 cm 2 mJ −1 was comparable to the k determined previously for transforming activity loss of plasmids using host cells capable of DNA repair, but much lower (∼10-fold) than that for DNA repair-deficient cells. The k value for pUC19 transforming activity loss was similarly much lower than the k calculated for cyclobutane-pyrimidine dimer (CPD) formation in the entire plasmid. These results indicate the significant role of CPD repair in the host cells. The degradation rate constants ( k ) of amp R measured by qPCR increased with increasing target amplicon size (192–851 bp) and were close to the k calculated for the CPD formation in the given amplicons. Further analysis of the degradation kinetics of plasmid-encoded genes from this study and from the literature revealed that qPCR detected most UV-induced DNA damage. In the extracellular plasmid, DNA damage mechanisms other than CPD formation ( e.g. , base oxidation) were detectable by qPCR and gel electrophoresis, especially during UV/H 2 O 2 treatment. Nevertheless, the enhanced DNA damage for the extracellular plasmids did not result in faster elimination of the transforming activity. Our results indicate that calculated CPD formation rates and qPCR analyses are useful for predicting and/or measuring the rate of DNA damage and predicting the efficiency of transforming activity elimination for plasmid-encoded ARGs during UV-based water disinfection and oxidation processes.  more » « less
Award ID(s):
1254929
PAR ID:
10296260
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
4
Issue:
9
ISSN:
2053-1400
Page Range / eLocation ID:
1239 to 1251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5′ side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genesRPL13AandRPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription. 
    more » « less
  2. Abstract Polar regions are relatively isolated from human activity and thus could offer insight into anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are of particular interest in this context given the central role that they are thought to play in the dissemination of antibiotic resistance genes (ARGs). However, plasmidomes are challenging to profile in environmental samples. The objective of this study was to compare various aspects of the plasmidome associated with glacial ice and adjacent aquatic environments across the high Arctic archipelago of Svalbard, representing a gradient of anthropogenic inputs and specific treated and untreated wastewater outflows to the sea. We accessed plasmidomes by applying enrichment cultures, plasmid isolation and shotgun Illumina sequencing of environmental samples. We examined the abundance and diversity of ARGs and other stress‐response genes that might be co/cross‐selected or co‐transported in these environments, including biocide resistance genes (BRGs), metal resistance genes (MRGs), virulence genes (VGs) and integrons. We found striking differences between glacial ice and aquatic environments in terms of the ARGs carried by plasmids. We found a strong correlation between MRGs and ARGs in plasmids in the wastewaters and fjords. Alternatively, in glacial ice, VGs and BRGs genes were dominant, suggesting that glacial ice may be a repository of pathogenic strains. Moreover, ARGs were not found within the cassettes of integrons carried by the plasmids, which is suggestive of unique adaptive features of the microbial communities to their extreme environment. This study provides insight into the role of plasmids in facilitating bacterial adaptation to Arctic ecosystems as well as in shaping corresponding resistomes. Increasing human activity, warming of Arctic regions and associated increases in the meltwater run‐off from glaciers could contribute to the release and spread of plasmid‐related genes from Svalbard to the broader pool of ARGs in the Arctic Ocean. 
    more » « less
  3. Abstract BackgroundThere is concern that the microbially rich activated sludge environment of wastewater treatment plants (WWTPs) may contribute to the dissemination of antibiotic resistance genes (ARGs). We applied long-read (nanopore) sequencing to profile ARGs and their neighboring genes to illuminate their fate in the activated sludge treatment by comparing their abundance, genetic locations, mobility potential, and bacterial hosts within activated sludge relative to those in influent sewage across five WWTPs from three continents. ResultsThe abundances (gene copies per Gb of reads, aka gc/Gb) of all ARGs and those carried by putative pathogens decreased 75–90% from influent sewage (192-605 gc/Gb) to activated sludge (31-62 gc/Gb) at all five WWTPs. Long reads enabled quantification of the percent abundance of ARGs with mobility potential (i.e., located on plasmids or co-located with other mobile genetic elements (MGEs)). The abundance of plasmid-associated ARGs decreased at four of five WWTPs (from 40–73 to 31–68%), and ARGs co-located with transposable, integrative, and conjugative element hallmark genes showed similar trends. Most ARG-associated elements decreased 0.35–13.52% while integrative and transposable elements displayed slight increases at two WWTPs (1.4–2.4%). While resistome and taxonomic compositions both shifted significantly, host phyla for chromosomal ARG classes remained relatively consistent, indicating vertical gene transfer via active biomass growth in activated sludge as the key pathway of chromosomal ARG dissemination. ConclusionsOverall, our results suggest that the activated sludge process acted as a barrier against the proliferation of most ARGs, while those that persisted or increased warrant further attention. 
    more » « less
  4. Abstract Sequencing of melanomas has identified hundreds of recurrent mutations in both coding and non-coding DNA. These include a number of well-characterized oncogenic driver mutations, such as coding mutations in the BRAF and NRAS oncogenes, and non-coding mutations in the promoter of telomerase reverse transcriptase ( TERT ). However, the molecular etiology and significance of most of these mutations is unknown. Here, we use a new method known as CPD-capture-seq to map UV-induced cyclobutane pyrimidine dimers (CPDs) with high sequencing depth and single nucleotide resolution at sites of recurrent mutations in melanoma. Our data reveal that many previously identified drivers and other recurrent mutations in melanoma occur at CPD hotspots in UV-irradiated melanocytes, often associated with an overlapping binding site of an E26 transformation-specific (ETS) transcription factor. In contrast, recurrent mutations in the promoters of a number of known or suspected cancer genes are not associated with elevated CPD levels. Our data indicate that a subset of recurrent protein-coding mutations are also likely caused by ETS-induced CPD hotspots. This analysis indicates that ETS proteins profoundly shape the mutation landscape of melanoma and reveals a method for distinguishing potential driver mutations from passenger mutations whose recurrence is due to elevated UV damage. 
    more » « less
  5. The main objective of this study was to investigate the effectiveness of ultraviolet light (UV-C) emitting diodes for the decontamination of stainless steel food contact surfaces. Listeria monocytogenes (ATCC 19115), Escherichia coli (ATCC 25922), and Salmonella enterica serovar Typhimurium (ATCC 700720) were chosen as challenge microorganisms. Target microorganisms were subjected to UV-C dosages of 0, 2, 4, 6, and 8 mJ cm −2 at an average fluence of 0.163 mW/cm 2 using a near-collimated beam operating at 279 nm wavelength. Escherichia coli showed lower sensitivity to UV-C light compared to Salmonella Typhimurium and followed first-order kinetics. Escherichia coli and Salmonella Typhimurium were reduced by more than 3-log 10 cycles at the maximum UV dosage of 12 mJ cm −2 . In contrast, Listeria monocytogenes followed the Weibull model with an apparent shoulder in the initial doses. A maximum reduction of 4.4-log 10 was achieved at the highest exposure level. This study showed that UV-C LED devices represent an excellent alternative for the inactivation of foodborne microorganisms in droplets. Results clearly demonstrate that UV-C LED devices can serve as an additional sanitation method to routine cleaning practices, which are commonly utilized in the food industry. 
    more » « less