skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ChameleonDB: a key-value store for optane persistent memory
The emergence of Intel's Optane DC persistent memory (Optane Pmem) draws much interest in building persistent key-value (KV) stores to take advantage of its high throughput and low latency. A major challenge in the efforts stems from the fact that Optane Pmem is essentially a hybrid storage device with two distinct properties. On one hand, it is a high-speed byte-addressable device similar to DRAM. On the other hand, the write to the Optane media is conducted at the unit of 256 bytes, much like a block storage device. Existing KV store designs for persistent memory do not take into account of the latter property, leading to high write amplification and constraining both write and read throughput. In the meantime, a direct re-use of a KV store design intended for block devices, such as LSM-based ones, would cause much higher read latency due to the former property. In this paper, we propose ChameleonDB, a KV store design specifically for this important hybrid memory/storage device by considering and exploiting these two properties in one design. It uses LSM tree structure to efficiently admit writes with low write amplification. It uses an in-DRAM hash table to bypass LSM-tree's multiple levels for fast reads. In the meantime, ChameleonDB may choose to opportunistically maintain the LSM multi-level structure in the background to achieve short recovery time after a system crash. ChameleonDB's hybrid structure is designed to be able to absorb sudden bursts of a write workload, which helps avoid long-tail read latency. Our experiment results show that ChameleonDB improves write throughput by 3.3× and reduces read latency by around 60% compared with a legacy LSM-tree based KV store design. ChameleonDB provides performance competitive even with KV stores using fully in-DRAM index by using much less DRAM space. Compared with CCEH, a persistent hash table design, ChameleonDB provides 6.4× higher write throughput.  more » « less
Award ID(s):
1704504 1815303
PAR ID:
10296306
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
EuroSys '21: Proceedings of the Sixteenth European Conference on Computer Systems
Page Range / eLocation ID:
194 to 209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Key-value store based on a log-structured merge-tree (LSMtree) is preferable to hash-based KV store because an LSMtree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD) and consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42% nd shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree. 
    more » « less
  2. Computer systems utilizing byte-addressable Non-Volatile Memory ( NVM ) as memory/storage can provide low-latency data persistence. The widely used key-value stores using Log-Structured Merge Tree ( LSM-Tree ) are still beneficial for NVM systems in aspects of the space and write efficiency. However, the significant write amplification introduced by the leveled compaction of LSM-Tree degrades the write performance of the key-value store and shortens the lifetime of the NVM devices. The existing studies propose new compaction methods to reduce write amplification. Unfortunately, they result in a relatively large read amplification. In this article, we propose NVLSM, a key-value store for NVM systems using LSM-Tree with new accumulative compaction. By fully utilizing the byte-addressability of NVM, accumulative compaction uses pointers to accumulate data into multiple floors in a logically sorted run to reduce the number of compactions required. We have also proposed a cascading searching scheme for reads among the multiple floors to reduce read amplification. Therefore, NVLSM reduces write amplification with small increases in read amplification. We compare NVLSM with key-value stores using LSM-Tree with two other compaction methods: leveled compaction and fragmented compaction. Our evaluations show that NVLSM reduces write amplification by up to 67% compared with LSM-Tree using leveled compaction without significantly increasing the read amplification. In write-intensive workloads, NVLSM reduces the average latency by 15.73%–41.2% compared to other key-value stores. 
    more » « less
  3. Persistent memory (PM) brings important opportunities for improving data storage including the widely used hash tables. However, PM is not friendly to small writes, which causes existing PM hashes to suffer from high hardware write amplification. Hybrid memory offers the performance and concurrency of DRAM and the durability and capacity of PM, but existing hybrid memory hashes cannot deliver high performance, low DRAM footprint, and fast recovery at the same time. This paper proposes WALSH, a flat hash with novel log-structured separate chaining designs to optimize the performance while ensuring low DRAM footprint and fast recovery. To address the overhead of hash resizing and garbage collection (GC), WALSH further proposes partial resizing/GC mechanisms and a 4-phase protocol for concurrent hash operations. As a result, WALSH is the first flat index for hybrid memory with embedded write aggregation ability. A comprehensive evaluation shows that WALSH substantially outperforms state-of-the-art hybrid memory hashes; e.g., its insert throughput is up to 2.4X that of related works while saving more than 87% of DRAM. WALSH also provides efficient recovery; e.g., it can recover a dataset with 1 billion objects in just a few seconds. 
    more » « less
  4. Persistent memory (PMem) is a low-latency storage technology connected to the processor memory bus. The Direct Access (DAX) interface promises fast access to PMem, mapping it directly to processes' virtual address spaces. However, virtual memory operations (e.g., paging) limit its performance and scalability. Through an analysis of Linux/x86 memory mapping, we find that current systems fall short of what hardware can provide due to numerous software inefficiencies stemming from OS assumptions that memory mapping is for DRAM. In this paper we propose DaxVM, a design that extends the OS virtual memory and file system layers leveraging persistent memory attributes to provide a fast and scalable DAX-mmap interface. DaxVM eliminates paging costs through pre-populated file page tables, supports faster and scalable virtual address space management for ephemeral mappings, performs unmappings asynchronously, bypasses kernel-space dirty-page tracking support, and adopts asynchronous block pre-zeroing. We implement DaxVM in Linux and the ext4 file system targeting x86-64 architecture. DaxVM mmap achieves 4.9× higher throughput than default mmap for the Apache webserver and up to 1.5× better performance than read system calls. It provides similar benefits for text search. It also provides fast boot times and up to 2.95× better throughput than default mmap for PMem-optimized key-value stores running on a fragmented ext4 image. Despite designed for direct access to byte-addressable storage, various aspects of DaxVM are relevant for efficient access to other high performant storage mediums. 
    more » « less
  5. Persistent memory (PMem) is a low-latency storage technology connected to the processor memory bus. The Direct Access (DAX) interface promises fast access to PMem, mapping it directly to processes' virtual address spaces. However, virtual memory operations (e.g., paging) limit its performance and scalability. Through an analysis of Linux/x86 memory mapping, we find that current systems fall short of what hardware can provide due to numerous software inefficiencies stemming from OS assumptions that memory mapping is for DRAM. In this paper we propose DaxVM, a design that extends the OS virtual memory and file system layers leveraging persistent memory attributes to provide a fast and scalable DAX-mmap interface. DaxVM eliminates paging costs through pre-populated file page tables, supports faster and scalable virtual address space management for ephemeral mappings, performs unmappings asynchronously, bypasses kernel-space dirty-page tracking support, and adopts asynchronous block pre-zeroing. We implement DaxVM in Linux and the ext4 file system targeting x86-64 architecture. DaxVM mmap achieves 4.9× higher throughput than default mmap for the Apache webserver and up to 1.5× better performance than read system calls. It provides similar benefits for text search. It also provides fast boot times and up to 2.95× better throughput than default mmap for PMem-optimized key-value stores running on a fragmented ext4 image. Despite designed for direct access to byte-addressable storage, various aspects of DaxVM are relevant for efficient access to other high performant storage mediums. 
    more » « less