In this paper, we address the problem of detecting and learning anomalies in high-dimensional data-streams in real-time. Following a data-driven approach, we propose an online and multivariate anomaly detection method that is suitable for the timely and accurate detection of anomalies. We propose our method for both semi-supervised and supervised settings. By combining the semi-supervised and supervised algorithms, we present a self-supervised online learning algorithm in which the semi-supervised algorithm trains the supervised algorithm to improve its detection performance over time. The methods are comprehensively analyzed in terms of computational complexity, asymptotic optimality, and false alarm rate. The performances of the proposed algorithms are also evaluated using real-world cybersecurity datasets, that show a significant improvement over the state-of-the-art results.
more »
« less
Jump-Starting Multivariate Time Series Anomaly Detection for Online Service Systems
With the booming of online service systems, anomaly detection on multivariate time series, such as a combination of CPU utilization, average response time, and requests per second, is important for system reliability. Although a collection of learning-based approaches have been designed for this purpose, our empirical study shows that these approaches suffer from long initialization time for sufficient training data. In this paper, we introduce the Compressed Sensing technique to multivariate time series anomaly detection for rapid initialization. To build a jump-starting anomaly detector, we propose an approach named JumpStarter. Based on domainspecific insights, we design a shape-based clustering algorithm as well as an outlier-resistant sampling algorithm for JumpStarter.With real-world multivariate time series datasets collected from two Internet companies, our results show that JumpStarter achieves an average F1 score of 94.12%, significantly outperforming the state-of-the-art anomaly detection algorithms, with a much shorter initialization time of twenty minutes. We have applied JumpStarter in online service systems and gained useful lessons in real-world scenarios.
more »
« less
- PAR ID:
- 10296506
- Date Published:
- Journal Name:
- Proceedings of the 2021 USENIX Annual Technical Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graph-based anomaly detection is pivotal in diverse security applications, such as fraud detection in transaction networks and intrusion detection for network traffic. Standard approaches, including Graph Neural Networks (GNNs), often struggle to generalize across shifting data distributions. For instance, we observe that a real-world eBay transaction dataset revealed an over 50% decline in fraud detection accuracy when adding data from only a single new day to the graph due to data distribution shifts. This highlights a critical vulnerability in purely data-driven approaches. Meanwhile, real-world domain knowledge, such as "simultaneous transactions in two locations are suspicious," is more stable and a common existing component of real-world detection strategies. To explicitly integrate such knowledge into data-driven models such as GCNs, we propose KnowGraph, which integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection. KnowGraph comprises two principal components: (1) a statistical learning component that utilizes a main model for the overarching detection task, augmented by multiple specialized knowledge models that predict domain-specific semantic entities; (2) a reasoning component that employs probabilistic graphical models to execute logical inferences based on model outputs, encoding domain knowledge through weighted first-order logic formulas. In addition, KnowGraph has leveraged the Predictability-Computability-Stability (PCS) framework for veridical data science to estimate and mitigate prediction uncertainties. Empirically, KnowGraph has been rigorously evaluated on two significant real-world scenarios: collusion detection in the online marketplace eBay and intrusion detection within enterprise networks. Extensive experiments on these large-scale real-world datasets show that KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings, achieving substantial gains in average precision when generalizing to completely unseen test graphs. Further ablation studies demonstrate the effectiveness of the proposed reasoning component in improving detection performance, especially under extreme class imbalance. These results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.more » « less
-
Multivariate time series anomaly detection has become an active area of research in recent years, with Deep Learning models outperforming previous approaches on benchmark datasets. Among reconstruction-based models, most previous work has focused on Variational Autoencoders and Generative Adversarial Networks. This work presents DGHL, a new family of generative models for time series anomaly detection, trained by maximizing the observed likelihood by posterior sampling and alternating back-propagation. A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently. Despite relying on posterior sampling, it is computationally more efficient than current approaches, with up to 10x shorter training times than RNN based models. Our method outperformed current state-of-the-art models on four popular benchmark datasets. Finally, DGHL is robust to variable features between entities and accurate even with large proportions of missing values, settings with increasing relevance with the advent of IoT. We demonstrate the superior robustness of DGHL with novel occlusion experiments in this literature. Our code is available at https://github. com/cchallu/dghl.more » « less
-
Anomaly detection in complex domains poses significant challenges due to the need for extensive labeled data and the inherently imbalanced nature of anomalous versus benign samples. Graph-based machine learning models have emerged as a promising solution that combines attribute and relational data to uncover intricate patterns. However, the scarcity of anomalous data exacerbates the challenge, which requires innovative strategies to enhance model learning with limited information. In this paper, we hypothesize that the incorporation of the influence of the nodes, quantified through average controllability, can significantly improve the performance of anomaly detection. We propose two novel approaches to integrate average controllability into graph-based frameworks: (1) using average controllability as an edge weight and (2) encoding it as a one-hot edge attribute vector. Through rigorous evaluation on real-world and synthetic networks with six state-of-the-art baselines, our proposed methods demonstrate improved performance in identifying anomalies, highlighting the critical role of controllability measures in enhancing the performance of graph machine learning models. This work underscores the potential of integrating average controllability as additional metrics to address the challenges of anomaly detection in sparse and imbalanced datasets.more » « less
-
null (Ed.)Modern physical systems deploy large numbers of sensors to record at different time-stamps the status of different systems components via measurements such as temperature, pressure, speed, but also the component's categorical state. Depending on the measurement values, there are two kinds of sequences: continuous and discrete. For continuous sequences, there is a host of state-of-the-art algorithms for anomaly detection based on time-series analysis, but there is a lack of effective methodologies that are tailored specifically to discrete event sequences. This paper proposes an analytics framework for discrete event sequences for knowledge discovery and anomaly detection. During the training phase, the framework extracts pairwise relationships among discrete event sequences using a neural machine translation model by viewing each discrete event sequence as a "natural language". The relationship between sequences is quantified by how well one discrete event sequence is "translated" into another sequence. These pairwise relationships among sequences are aggregated into a multivariate relationship graph that clusters the structural knowledge of the underlying system and essentially discovers the hidden relationships among discrete sequences. This graph quantifies system behavior during normal operation. During testing, if one or more pairwise relationships are violated, an anomaly is detected. The proposed framework is evaluated on two real-world datasets: a proprietary dataset collected from a physical plant where it is shown to be effective in extracting sensor pairwise relationships for knowledge discovery and anomaly detection, and a public hard disk drive dataset where its ability to effectively predict upcoming disk failures is illustrated.more » « less
An official website of the United States government

