skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reduced Model for Properties of Multiscale Porous Media with Changing Geometry
In this paper, we consider an important problem for modeling complex coupled phenomena in porous media at multiple scales. In particular, we consider flow and transport in the void space between the pores when the pore space is altered by new solid obstructions formed by microbial growth or reactive transport, and we are mostly interested in pore-coating and pore-filling type obstructions, observed in applications to biofilm in porous media and hydrate crystal formation, respectively. We consider the impact of these obstructions on the macroscopic properties of the porous medium, such as porosity, permeability and tortuosity, for which we build an experimental probability distribution with reduced models, which involves three steps: (1) generation of independent realizations of obstructions, followed by, (2) flow and transport simulations at pore-scale, and (3) upscaling. For the first step, we consider three approaches: (1A) direct numerical simulations (DNS) of the PDE model of the actual physical process called BN which forms the obstructions, and two non-DNS methods, which we call (1B) CLPS and (1C) LP. LP is a lattice Ising-type model, and CLPS is a constrained version of an Allen–Cahn model for phase separation with a localization term. Both LP and CLPS are model approximations of BN, and they seek local minima of some nonconvex energy functional, which provide plausible realizations of the obstructed geometry and are tuned heuristically to deliver either pore-coating or pore-filling obstructions. Our methods work with rock-void geometries obtained by imaging, but bypass the need for imaging in real-time, are fairly inexpensive, and can be tailored to other applications. The reduced models LP and CLPS are less computationally expensive than DNS, and can be tuned to the desired fidelity of the probability distributions of upscaled quantities.  more » « less
Award ID(s):
1522734 1912938
PAR ID:
10296583
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computation
Volume:
9
Issue:
3
ISSN:
2079-3197
Page Range / eLocation ID:
28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present a proof of concept for both 3D-printed media and a machine learning analysis methodology to investigate void formation and transport during liquid filling. Through a series of experiments, we characterized void formation and transport at constant flow rates using two calibrated fabric-like porous geometries created by Stereolithography and Multi Jet Fusion 3D printing techniques. Our findings highlight the significance of porous medium geometry and void size, in addition to the capillary number, in characterizing void formation and mobility during resin flow into a mold containing a fibrous preform. Notably, the paper's strength lies in the presentation of advanced bubble analysis methods, including frame-by-frame high-resolution video analysis, enabling the identification of individual bubbles and the extraction of their statistics, such as count, size, and velocity throughout the experiment. These insights contribute to the design of more efficient processes, resulting in composite parts with reduced void content. 
    more » « less
  2. Natural convection in porous media is a fundamental process for the long-term storage of CO 2 in deep saline aquifers. Typically, details of mass transfer in porous media are inferred from the numerical solution of the volume-averaged Darcy–Oberbeck–Boussinesq (DOB) equations, even though these equations do not account for the microscopic properties of a porous medium. According to the DOB equations, natural convection in a porous medium is uniquely determined by the Rayleigh number. However, in contrast with experiments, DOB simulations yield a linear scaling of the Sherwood number with the Rayleigh number ( $Ra$ ) for high values of $Ra$ ( $$Ra\gg 1300$$ ). Here, we perform direct numerical simulations (DNS), fully resolving the flow field within the pores. We show that the boundary layer thickness is determined by the pore size instead of the Rayleigh number, as previously assumed. The mega- and proto-plume sizes increase with the pore size. Our DNS results exhibit a nonlinear scaling of the Sherwood number at high porosity, and for the same Rayleigh number, higher Sherwood numbers are predicted by DNS at lower porosities. It can be concluded that the scaling of the Sherwood number depends on the porosity and the pore-scale parameters, which is consistent with experimental studies. 
    more » « less
  3. null (Ed.)
    The modelling of natural convection in porous media is receiving increased interest due to its significance in environmental and engineering problems. State-of-the-art simulations are based on the classic macroscopic Darcy–Oberbeck–Boussinesq (DOB) equations, which are widely accepted to capture the underlying physics of convection in porous media provided the Darcy number, $Da$ , is small. In this paper we analyse and extend the recent pore-resolved direct numerical simulations (DNS) of Gasow et al. ( J. Fluid Mech , vol. 891, 2020, p. A25) and show that the macroscopic diffusion, which is neglected in DOB, is of the same order (with respect to $Da$ ) as the buoyancy force and the Darcy drag. Consequently, the macroscopic diffusion must be modelled even if the value of $Da$ is small. We propose a ‘two-length-scale diffusion’ model, in which the effect of the pore scale on the momentum transport is approximated with a macroscopic diffusion term. This term is determined by both the macroscopic length scale and the pore scale. It includes a transport coefficient that solely depends on the pore-scale geometry. Simulations of our model render a more accurate Sherwood number, root mean square (r.m.s.) of the mass concentration and r.m.s. of the velocity than simulations that employ the DOB equations. In particular, we find that the Sherwood number $Sh$ increases with decreasing porosity and with increasing Schmidt number $(Sc)$ . In addition, for high values of $Ra$ and high porosities, $Sh$ scales nonlinearly. These trends agree with the DNS, but are not captured in the DOB simulations. 
    more » « less
  4. The study of thermal convection in porous media is of both fundamental and practical interest. Typically, numerical studies have relied on the volume-averaged Darcy–Oberbeck–Boussinesq (DOB) equations, where convection dynamics are assumed to be controlled solely by the Rayleigh number ( Ra ). Nusselt numbers ( Nu ) from these models predict Nu – Ra scaling exponents of 0.9–0.95. However, experiments and direct numerical simulations (DNS) have suggested scaling exponents as low as 0.319. Recent findings for solutal convection between DNS and DOB models have demonstrated that the ‘pore-scale parameters’ not captured by the DOB equations greatly influence convection. Thermal convection also has the additional complication of different thermal transport properties (e.g. solid-to-fluid thermal conductivity ratio k s / k f and heat capacity ratio σ ) in different phases. Thus, in this work we compare results for thermal convection from the DNS and DOB equations. On the effects of pore size, DNS results show that Nu increases as pore size decreases. Mega-plumes are also found to be more frequent and smaller for reduced pore sizes. On the effects of conjugate heat transfer, two groups of cases (Group 1 with varying k s / k f at σ  = 1 and Group 2 with varying σ at k s / k f  = 1) are examined to compare the Nu – Ra relations at different porosity ( ϕ ) and k s / k f and σ values. Furthermore, we report that the boundary layer thickness is determined by the pore size in DNS results, while by both the Rayleigh number and the effective heat capacity ratio, $$\bar{\phi } = \phi + (1 - \phi )\sigma$$ , in the DOB model. 
    more » « less
  5. Abstract Large discrepancies between well-mixed reaction rates and effective reactions rates estimated under fluid flow conditions have been a major issue for predicting reactive transport in porous media systems. In this study, we introduce a framework that accurately predicts effective reaction rates directly from pore structural features by combining 3D pore-scale numerical simulations with machine learning (ML). We first perform pore-scale reactive transport simulations with fluid–solid reactions in hundreds of porous media and calculate effective reaction rates from pore-scale concentration fields. We then train a Random Forests model with 11 pore structural features and effective reaction rates to quantify the importance of structural features in determining effective reaction rates. Based on the importance information, we train artificial neural networks with varying number of features and demonstrate that effective reaction rates can be accurately predicted with only three pore structural features, which are specific surface, pore sphericity, and coordination number. Finally, global sensitivity analyses using the ML model elucidates how the three structural features affect effective reaction rates. The proposed framework enables accurate predictions of effective reaction rates directly from a few measurable pore structural features, and the framework is readily applicable to a wide range of applications involving porous media flows. 
    more » « less