skip to main content


Title: The effect of resin uptake on the flexural properties of compression molded sandwich composites
Abstract

Resin uptake plays a critical role in the stiffness‐to‐weight ratio of wind turbine blades in which sandwich composites are used extensively. This work examines the flexural properties of nominally half‐inch thick sandwich composites made with polyvinyl chloride (PVC) foam cores (H60 and H80; PSC and GPC) at several resin uptakes. We found that the specific flexural strength and modulus for the H80 GPC sandwich composites increase from 82.04 to 90.70 kN · m/kg and 6.03 to 7.13 MN · m/kg, respectively, with 11.0% resin uptake reduction, which stands out among the four core sandwich composites. Considering reaching a high stiffness‐to‐weight ratio while preventing resin starvation, 32% to 38% and 40% to 45% resin uptakes are adequate ranges for the H80 PSC and GPC sandwich composites, respectively. The H60 GPC sandwich composites have lower debonding toughness than H60 PSC due to stress concentration in the smooth side skin‐core interphase region. The ailure mode of the sandwich composites depends on the core stiffness and surface texture. The H60 GPC sandwich composites exhibit core shearing and bottom skin‐core debonding failure, while the H80 GPC and PSC sandwich composites show top skin cracking and core crushing failure. The findings indicate that an appropriate range of resin uptake exists for each type of core sandwich composite, and that within the range, a low‐resin uptake leads to lighter blades and thus lower cyclic gravitational loads, beneficial for long blades.

 
more » « less
Award ID(s):
1661246 1916776
NSF-PAR ID:
10448044
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Wind Energy
Volume:
25
Issue:
1
ISSN:
1095-4244
Page Range / eLocation ID:
p. 71-93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN/s was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites. 
    more » « less
  2. null (Ed.)
    Background:: Sandwich structures are progressively being used in various engineering applications due to the superior bending-stiffness-to-weight ratio of these structures. We adapted a novel technique to incorporate carbon nanotubes (CNTs) and polyhedral oligomeric silsesquioxanes (POSS) into a sandwich composite structure utilizing a sonochemical and high temperature vacuum assisted resin transfer molding technique. Objective:: The objective of this work was to create a sandwich composite structure comprised of a nanophased foam core and reinforced nanophased face sheets, and to examine the thermal and mechanical properties of the structure. To prepare sandwich structure, POSS nanoparticles were sonochemically attached to CNTs and dispersed in a high temperature resin system to make the face sheet materials and also coated on expandable thermoplastic microspheres for the fabrication of foam core materials. Method:: The nanophased foam core was fabricated with POSS infused thermoplastic microspheres (Expancel) using a Tetrahedron MTP-14 programmable compression molder. The reinforced nanophased face sheet were fabricated by infusing POSS coated CNT in epoxy resin and then curing into a compression stainless steel mold. Result:: Thermal analysis of POSS-infused thermoplastic microspheres foam (TMF) showed an increase in thermal stability in both nitrogen and oxygen atmospheres, 19% increase in thermal residue were observed for 4 wt% GI-POSS TMF compared to neat TMF. Quasi-static compression results indicated significant increases (73%) in compressive modulus, and an increase (5%) in compressive strength for the 1 wt% EC-POSS/CNTs resin system. The nanophased sandwich structure constructed from the above resin system and the foam core system displayed an increase (9%) in modulus over the neat sandwich structure. Conclusion:: The incorporation of POSS-nanofillier in the foam core and POSS-coated nanotubes in the face sheet significantly improved the thermal and mechanical properties of sandwich structure. Furthermore, the sandwich structure that was constructed from nanophased resin system showed an increase in modulus, with buckling in the foam core but no visible cracking. 
    more » « less
  3. null (Ed.)
    The effect of chain extender structure and composition on the thermomechanical properties of liquid crystal elastomers (LCE) synthesized using thiol-acrylate Michael addition is presented. The intrinsic molecular stiffness of the thiol chain extender and its relative molar ratio to acrylate-based host mesogens determine the magnitudes of the thermomechanical strains, temperatures at which they are realized and the mechanical work-content. A non-linear structure-property relationship emerges, wherein higher concentrations of flexible extenders first magnify the thermomechanical sensitivity, but a continued increase leads to weaker actuation. Understanding this interplay leads to a composite material platform, enabling a peak specific work production of ~2 J/kg using ~115 mW of electrical power supplied at 2 V. Composites of LCE with eGaIn liquid metal (LM) are prepared, which act as heaters, while being capable of actuation themselves. The thermomechanically active electrodes convert the electrical power into Joule heat, which they efficiently couple with the neat LCE to which they are bound. This system harnesses the nascent responsiveness of the LCE using electrodes that work with them, instead of fighting against them (or passively standing in the way). Specific work generated increases when subjected to increasing levels of load, reaching a peak at loads 260x the actuator weight. These ideas are extended to tri-layered actuators, where LCE films with orthogonal molecular orientations sandwich LCE-LM composite heaters. Torsional actuation modes are harnessed to twist under load. 
    more » « less
  4. Abstract

    Hygroscopic hydrogels are emerging as scalable and low‐cost sorbents for atmospheric water harvesting, dehumidification, passive cooling, and thermal energy storage. However, devices using these materials still exhibit insufficient performance, partly due to the limited water vapor uptake of the hydrogels. Here, the swelling dynamics of hydrogels in aqueous lithiumchloride solutions, the implications on hydrogel salt loading, and the resulting vapor uptake of the synthesized hydrogel–salt composites are characterized. By tuning the salt concentration of the swelling solutions and the cross‐linking properties of the gels, hygroscopic hydrogels with extremely high salt loadings are synthesized, which enable unprecedented water uptakes of 1.79 and 3.86 gg−1at relative humidity (RH) of 30% and 70%, respectively. At 30% RH, this exceeds previously reported water uptakes of metal–organic frameworks by over 100% and of hydrogels by 15%, bringing the uptake within 93% of the fundamental limit of hygroscopic salts while avoiding leakage problems common in salt solutions. By modeling the salt‐vapor equilibria, the maximum leakage‐free RH is elucidated as a function of hydrogel uptake and swelling ratio. These insights guide the design of hydrogels with exceptional hygroscopicity that enable sorption‐based devices to tackle water scarcity and the global energy crisis.

     
    more » « less
  5. Abstract Profiled hollow core sandwich panels (SPs) and their components (outer layers and core) were manufactured with ponderosa and lodgepole pine wood strands to determine the effects of low-velocity impact forces and to observe their energy absorption (EA) capacities and failure modes. An instrumented drop weight impact system was applied and the tests were performed by releasing the impact head from 500 mm for all the specimens while the impactors (IMPs) were equipped with hemispherical and flat head cylindrical heads. SPs with cavities filled with a rigid foam insulation material (SP foam ) were also tested to understand the change in EA behavior and failure mode. Failure modes induced by both IMPs to SPs were found to be splitting, perforating, penetrating, core crushing and debonding between the core and the outer layers. SP foam s absorbed 26% more energy than unfilled SPs. SP foam s with urethane foam suffer less severe failure modes than SPs. SPs in a ridge-loading configuration absorbed more impact energy than those in a valley-loading configuration, especially when impacted by a hemispherical IMP. Based on the results, it is evident that sandwich structure is more efficient than a solid panel concerning impact energy absorption, primarily due to a larger elastic section modulus of the core’s corrugated geometry. 
    more » « less