skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mixed incorporation of carbon and hydrogen in silicate melts under varying pressure and redox conditions
Volatiles including carbon and hydrogen are generally considered to be more soluble in silicate melts than in mantle rocks. How these melts contribute to the storage and distribution of key volatiles in Earth's interior today and during its early evolution, however, remains largely unknown. It is essential to improve our knowledge about volatiles-bearing silicate magmas over the entire mantle pressure regime. Here we investigate molten Mg FexSiO3 ( , 0.25) containing both carbon and hydrogen using first-principles molecular dynamics simulations. Our results show that the dissolution mechanism of the binary volatiles in melts varies considerably under different conditions of pressure and redox. When incorporated as CO2 and H2O components (corresponding to oxidizing conditions) almost all carbon and hydrogen form bonds with oxygen. Their speciation at low pressure consists of predominantly isolated molecular CO2, carbonates, and hydroxyls. More oxygenated species, including tetrahedrally coordinated carbons, hydrogen (O-H-O) bridges, various oxygen-joined complexes appear as melt is further compressed. When two volatiles are incorporated as hydrocarbons CH4 and C2H6 (corresponding to reducing conditions), hydroxyls are prevalent with notable presence of molecular hydrogen. Carbon-oxygen bonding is almost completely suppressed. Instead carbon is directly correlated with itself, hydrogen, and silicon. Both volatiles also show strong affinity to iron. Reduced volatile speciation thus involves polymerized complexes comprising of carbon, hydrogen, silicon, and iron, which can be mostly represented by two forms: C1−4H1−5Si0−5O0−2 (iron-free) and C5−8H1−8Si0−6Fe5−8O0−2. The calculated partial molar volumes of binary volatiles in their oxidized and reduced incorporation decrease rapidly initially with pressure and then gradually at higher pressures, thereby systematically lowering silicate melt density. Our assessment of the calculated opposite effects of the volatile components and iron on melt density indicates that melt-crystal density crossovers are possible in the present-day mantle and also could have occurred in early magma ocean environments. Melts at upper mantle and transition zone conditions likely dissolve carbon and hydrogen in a wide variety of oxidized and non-oxygenated forms. Deep-seated partial melts and magma ocean remnants at lower mantle conditions may exsolve carbon as complex reduced species possibly to the core during core-mantle differentiation while retaining a majority of hydrogen as hydroxyls-associated species.  more » « less
Award ID(s):
1764140
PAR ID:
10296621
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Earth and planetary science letters
Volume:
549
ISSN:
1385-013X
Page Range / eLocation ID:
116520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Water (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1-xFexSiO3 and Mg2(1-x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000 to 4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt+water solution is negative at low pressures and becomes zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhances the melt electrical conductivity in a way that differs from electrical conduction in the bulk water. The speciation of the water component varies considerably from the bulk water structure as well. Water is dissolved in melts mostly as hydroxyls at low pressure and as -O-H-O-, -O-H-O-H- and other extended species with increasing pressure. On the other hand, the pure water behaves as a molecular fluid below 15 GPa, gradually becoming a dissociated fluid with further compression. On the basis of modeled density and conductivity results, we suggest that partial melts containing a few percent of water may be gravitationally trapped both above and below the upper mantle-transition region. Moreover, such hydrous melts can give rise to detectable electrical conductance by means of electromagnetic sounding observations. 
    more » « less
  2. Abstract Density of silicate melt dictates melt migration and establishes the gross structure of Earth's interior. However, due to technical challenges, the melt density of relevant compositions is poorly known at deep mantle conditions. Particularly, water may be dissolved in such melts in large amounts and can potentially affect their density at extreme pressure and temperature conditions. Here we perform first‐principles molecular dynamics simulations to evaluate the density of Fe‐rich, eutectic‐like silicate melt (Emelt) with varying water content up to about 12 wt %. Our results show that water mixes nearly ideally with the nonvolatile component in silicate melt and can decrease the melt density significantly. They also suggest that hydrous melts can be gravitationally stable in the lowermost mantle given its likely high iron content, providing a mechanism to explain seismically slow and dense layers near the core‐mantle boundary. 
    more » « less
  3. Abstract Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa. 
    more » « less
  4. null (Ed.)
    The oxidation state of the Earth’s mantle and its partial melting products exert a key control on the behavior and distribution of sulfur and chalcophile and siderophile elements between the mantle and crust, underpinning models of ore deposit formation. Whether the oxidized nature of magmas is inherited from the asthenospheric mantle source or acquired during ascent and differentiation is vigorously debated, limiting our understanding of the mechanisms of extraction of sulfur and metals from the mantle. Here, we focused on the redox-sensitive behavior of sulfur in apatite crystallized from quenched alkaline basaltic melts preserved within a peridotite xenolith from the El Deseado Massif auriferous province in southern Patagonia. We took advantage of this unique setting to elucidate the redox evolution of melts during their ascent through the subcontinental lithospheric mantle (SCLM) and grasp the inner workings of the Earth’s mantle during gold metallogenesis. Our data reveal that an initially reduced silicate melt (1FMQ 􀀀2.2 to 􀀀1.2) was oxidized to 1FMQ between 0 and 1.2 during percolation and interaction with the surrounding peridotite wall-rock (1FMQ 0 to C0.8). This process triggered changes in sulfur speciation and solubility in the silicate melt, boosting the potential of the melt to scavenge ore metals such as gold. We suggest that large redox gradients resulting from the interaction between ascending melts and the surrounding mantle can potentially modify the oxidation state of primitive melts and enhance their metallogenic fertility. Among other factors including an enriched metal source and favorable geodynamic conditions, redox gradients in the mantle may exert a first-order control on the global-scale localization of crustal provinces endowed with gold deposits. 
    more » « less
  5. Deep carbon cycle is crucial for mantle dynamics and maintaining Earth’s habitability. Recycled carbonates are a strong oxidant in mantle carbon-iron redox reactions, leading to the formation of highly oxidized mantle domains and deep carbon storage. Here we report high Fe3+/∑Fe values in Cenozoic intraplate basalts from eastern China, which are correlated with geochemical and isotopic compositions that point to a common role of carbonated melt with recycled carbonate signatures. We propose that the source of these highly oxidized basalts has been oxidized by carbonated melts derived from the stagnant subducted slab in the mantle transition zone. Diamonds formed during the carbon-iron redox reaction were separated from the melt due to density differences. This would leave a large amount of carbon (about four times of preindustrial atmospheric carbon budget) stored in the deep mantle and isolated from global carbon cycle. As such, the amounts of subducted slabs stagnated at mantle transition zone can be an important factor regulating the climate. 
    more » « less