skip to main content


Title: Enrichment of Microbes Potentially Degrading Polyethylene Using a Microcosm Approach
Plastic pollution is a worldwide phenomenon with concerning effects on the biosphere and particularly on the marine environment. Biodegradation is considered an environmentally friendly alternative to combat the increasing quantities of plastic pollutants where different microbial sources are tested for plastic degradation potential. In this project, a microcosm approach was used as an enrichment method for marine microbes degrading polyethylene. Pieces of low-density polyethylene (LDPE) and highdensity polyethylene (HDPE) previously deployed in ocean water have been explored as a source of microbial biomass. This source plastic was added to a synthetic medium containing sterilized pieces of LDPE and HDPE as the sole carbon source and were incubated for extended periods (32-86 days) in the laboratory to promote growth of microbes that can degrade plastic. Biodegradation of polyethylene was confirmed by dry weight measurements and Fourier Transform Infra-Red (FTIR) spectroscopy. For both LDPE and HDPE a significant reduction in dry weight was observed. FTIR analysisshowed peaks suggesting oxidative changes in polyethylene’s chemical composition. In summary, the microcosm approach can be considered a viable approach for enrichment of plastic-degrading marine microbial populations.  more » « less
Award ID(s):
1832545
NSF-PAR ID:
10296691
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fine Focus
Volume:
6
Issue:
1
ISSN:
2381-0637
Page Range / eLocation ID:
84 to 101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Katherine McMahon, University of (Ed.)
    Plastics, such as polyethylene terephthalate (PET) from water bottles, are polluting our oceans, cities, and soils. While a number of Pseudomonas species have been described that degrade aliphatic polyesters, such as polyethylene (PE) and polyurethane (PUR), few from this genus that degrade the semiaromatic poly- mer PET have been reported. In this study, plastic-degrading bacteria were isolated from petroleum-polluted soils and screened for lipase activity that has been associ- ated with PET degradation. Strains and consortia of bacteria were grown in a liquid carbon-free basal medium (LCFBM) with PET as the sole carbon source. We moni- tored several key physical and chemical properties, including bacterial growth and modi!cation of the plastic surface, using scanning electron microscopy (SEM) and attenuated total re"ectance-Fourier transform infrared spectroscopy (ATR-FTIR) spec- troscopy. We detected by-products of hydrolysis of PET using 1H-nuclear magnetic resonance (1H NMR) analysis, consistent with the ATR-FTIR data. The full consortium of !ve strains containing Pseudomonas and Bacillus species grew synergistically in the presence of PET and the cleavage product bis(2-hydroxyethyl) terephthalic acid (BHET) as sole sources of carbon. Secreted enzymes extracted from the full consor- tium were capable of fully converting BHET to the metabolically usable monomers terephthalic acid (TPA) and ethylene glycol. Draft genomes provided evidence for mixed enzymatic capabilities between the strains for metabolic degradation of TPA and ethylene glycol, the building blocks of PET polymers, indicating cooperation and ability to cross-feed in a limited nutrient environment with PET as the sole carbon source. The use of bacterial consortia for the biodegradation of PET may provide a partial solution to widespread planetary plastic accumulation. 
    more » « less
  2. The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortu- nately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches, we identified the key genes implicated in PET degradation within the consortium’s pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, which has been observed to hydrolyze the oligomer BHET and the polymer PET. Besides the genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degradation-related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based assay, which, paired with an abundant number of plastic- and plasticizer-degrading enzymes, indicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation, including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer metabolism was also observed, including the generation of polyhydroxyalkanoate (PHA)/polyhydroxybutyrate (PHB) biopolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential. 
    more » « less
  3. Materials recovery facilities (MRFs) require new automated technologies if growing recycling demands are to be met. Current optical screening devices use visible (VIS) and near-infrared (NIR) wavelengths, frequency ranges that can experience challenges during the characterization of postconsumer plastic waste (PCPW) because of the overly-absorbing spectral bands from dyes and other polymer additives. Technological bottlenecks such as these contribute to 91% of plastic waste never actually being recycled. The mid-infrared (MIR) region has attracted recent attention due to inherent advantages over the VIS and NIR. The fundamental vibrational modes found therein make MIR frequencies promising for high fidelity machine learning (ML) classification. To-date, there are no ML evaluations of extensive MIR spectral datasets reflecting PCPW that would be encountered at MRFs. This study establishes quantifiable metrics, such as model accuracy and prediction time, for classification of a comprehensive MIR database consisting of five PCPW classes that are of economic interest: polyethylene terephthalate (PET #1), high-density polyethylene (HDPE #2), low-density polyethylene (LDPE #4), polypropylene (PP #5), and polystyrene (PS #6). Autoencoders, an unsupervised ML algorithm, were applied to the random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM), and logistic regression (LR) models. The RF model achieved accuracies of 100.0% in both the C–H stretching region (2990–2820 cm −1 ) and molecular fingerprint region (1500–650 cm −1 ). The C–H stretching region was found to be free from additives that were responsible for misclassification in other regions, making it a fruitful frequency range for future PCPW sorting technologies. The MIR classification of black plastics and polyethylene PCPW using ML autoencoders was also evaluated for the first time. 
    more » « less
  4. Steven, Blaire (Ed.)
    ABSTRACT

    Polycyclic aromatic hydrocarbons (PAHs) are common toxic and carcinogenic pollutants in marine ecosystems. Despite their prevalence in these habitats, relatively little is known about the natural microflora and biochemical pathways that contribute to their degradation. Approaches to investigate marine microbial PAH degraders often heavily rely on genetic biomarkers, which requires prior knowledge of specific degradative enzymes and genes encoding them. As such, these biomarker-reliant approaches cannot efficiently identify novel degradation pathways or degraders. Here, we screen 18 marine bacterial strains representing the Pseudomonadota, Bacillota, and Bacteroidota phyla for degradation of two model PAHs, pyrene (high molecular weight) and phenanthrene (low molecular weight). Using a qualitative PAH plate screening assay, we determined that 16 of 18 strains show some ability to degrade either or both compounds. Degradative ability was subsequently confirmed with a quantitative high-performance liquid chromatography approach, where an additional strain showed some degradation in liquid culture. Several members of the prominent marineRoseobacteraceaefamily degraded pyrene and phenanthrene with varying efficiency (1.2%–29.6% and 5.2%–52.2%, respectively) over 26 days. Described PAH genetic biomarkers were absent in all PAH degrading strains for which genome sequences are available, suggesting that these strains harbor novel transformation pathways. These results demonstrate the utility of culture-based approaches in expanding the knowledge landscape concerning PAH degradation in marine systems.

    IMPORTANCE

    Polycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.

     
    more » « less
  5. Rappe, Michael S. (Ed.)
    ABSTRACT Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)—toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus . We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We compared metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids. IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA. 
    more » « less