The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortu- nately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches, we identified the key genes implicated in PET degradation within the consortium’s pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, which has been observed to hydrolyze the oligomer BHET and the polymer PET. Besides the genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degradation-related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based assay, which, paired with an abundant number of plastic- and plasticizer-degrading enzymes, indicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation, including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer metabolism was also observed, including the generation of polyhydroxyalkanoate (PHA)/polyhydroxybutyrate (PHB) biopolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential. 
                        more » 
                        « less   
                    
                            
                            Enrichment of Microbes Potentially Degrading Polyethylene Using a Microcosm Approach
                        
                    
    
            Plastic pollution is a worldwide phenomenon with concerning effects on the biosphere and particularly on the marine environment. Biodegradation is considered an environmentally friendly alternative to combat the increasing quantities of plastic pollutants where different microbial sources are tested for plastic degradation potential. In this project, a microcosm approach was used as an enrichment method for marine microbes degrading polyethylene. Pieces of low-density polyethylene (LDPE) and highdensity polyethylene (HDPE) previously deployed in ocean water have been explored as a source of microbial biomass. This source plastic was added to a synthetic medium containing sterilized pieces of LDPE and HDPE as the sole carbon source and were incubated for extended periods (32-86 days) in the laboratory to promote growth of microbes that can degrade plastic. Biodegradation of polyethylene was confirmed by dry weight measurements and Fourier Transform Infra-Red (FTIR) spectroscopy. For both LDPE and HDPE a significant reduction in dry weight was observed. FTIR analysisshowed peaks suggesting oxidative changes in polyethylene’s chemical composition. In summary, the microcosm approach can be considered a viable approach for enrichment of plastic-degrading marine microbial populations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832545
- PAR ID:
- 10296691
- Date Published:
- Journal Name:
- Fine Focus
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2381-0637
- Page Range / eLocation ID:
- 84 to 101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Katherine McMahon, University of (Ed.)Plastics, such as polyethylene terephthalate (PET) from water bottles, are polluting our oceans, cities, and soils. While a number of Pseudomonas species have been described that degrade aliphatic polyesters, such as polyethylene (PE) and polyurethane (PUR), few from this genus that degrade the semiaromatic poly- mer PET have been reported. In this study, plastic-degrading bacteria were isolated from petroleum-polluted soils and screened for lipase activity that has been associ- ated with PET degradation. Strains and consortia of bacteria were grown in a liquid carbon-free basal medium (LCFBM) with PET as the sole carbon source. We moni- tored several key physical and chemical properties, including bacterial growth and modi!cation of the plastic surface, using scanning electron microscopy (SEM) and attenuated total re"ectance-Fourier transform infrared spectroscopy (ATR-FTIR) spec- troscopy. We detected by-products of hydrolysis of PET using 1H-nuclear magnetic resonance (1H NMR) analysis, consistent with the ATR-FTIR data. The full consortium of !ve strains containing Pseudomonas and Bacillus species grew synergistically in the presence of PET and the cleavage product bis(2-hydroxyethyl) terephthalic acid (BHET) as sole sources of carbon. Secreted enzymes extracted from the full consor- tium were capable of fully converting BHET to the metabolically usable monomers terephthalic acid (TPA) and ethylene glycol. Draft genomes provided evidence for mixed enzymatic capabilities between the strains for metabolic degradation of TPA and ethylene glycol, the building blocks of PET polymers, indicating cooperation and ability to cross-feed in a limited nutrient environment with PET as the sole carbon source. The use of bacterial consortia for the biodegradation of PET may provide a partial solution to widespread planetary plastic accumulation.more » « less
- 
            Biguanides are organonitrogen compounds prevalent in wastewater due to their widespread use in agricultural additives, pharmaceuticals, and personal care products. Metformin (1,2-N-dimethylbiguanide) is the most prescribed type II diabetes drug in the world and has been detected at significant levels in coastal waters and rivers worldwide. While recent studies reported the isolation of metformin-degrading bacteria and uncovered its catabolic pathway, the biodegradation of other biguanides and the connections between their metabolic pathways remain unexplored. This study describes establishing a collaborative undergraduate research program amongst three universities that focused on investigating the biodegradation of biguanides using microbes from soils and wastewater. As part of a course undergraduate research experience (CURE) and a summer research program, students prepared microbial enrichment cultures using soils from diverse locations and activated sludge samples from wastewater treatment facilities. The samples were grown on a minimal medium with biguanides including metformin, 1-N-methylbiguanide, and cyanoguanidine as the sole nitrogen sources for growth. Biodegradation and microbial growth were monitored by HPLC analyses, colorimetric assays, and optical density, respectively. Microbial consortia capable of degrading multiple biguanides were obtained and further characterized by genome sequencing and bioinformatics analyses. Bacterial strains that metabolized biguanides independently of microbial consortia were isolated and examined for the presence of candidate genes and enzymes potentially involved in biguanide metabolism. Guanylurea hydrolase, an enzyme commonly found in several biguanide catabolic pathways, was selected for further mutagenesis and biochemical analyses. The results of these studies suggest that the microbial catabolism of biguanide compounds shares common guanylurea and guanidine intermediates as well as the enzymes involved in their metabolism. The CURE and summer research activities were implemented over two years in introductory as well as intermediate courses at the participating universities. Preliminary assessment results show students' learning gains in collaboration skills, data interpretation, and the application of microbial enzymes to enhance wastewater treatment processes.more » « less
- 
            Materials recovery facilities (MRFs) require new automated technologies if growing recycling demands are to be met. Current optical screening devices use visible (VIS) and near-infrared (NIR) wavelengths, frequency ranges that can experience challenges during the characterization of postconsumer plastic waste (PCPW) because of the overly-absorbing spectral bands from dyes and other polymer additives. Technological bottlenecks such as these contribute to 91% of plastic waste never actually being recycled. The mid-infrared (MIR) region has attracted recent attention due to inherent advantages over the VIS and NIR. The fundamental vibrational modes found therein make MIR frequencies promising for high fidelity machine learning (ML) classification. To-date, there are no ML evaluations of extensive MIR spectral datasets reflecting PCPW that would be encountered at MRFs. This study establishes quantifiable metrics, such as model accuracy and prediction time, for classification of a comprehensive MIR database consisting of five PCPW classes that are of economic interest: polyethylene terephthalate (PET #1), high-density polyethylene (HDPE #2), low-density polyethylene (LDPE #4), polypropylene (PP #5), and polystyrene (PS #6). Autoencoders, an unsupervised ML algorithm, were applied to the random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM), and logistic regression (LR) models. The RF model achieved accuracies of 100.0% in both the C–H stretching region (2990–2820 cm −1 ) and molecular fingerprint region (1500–650 cm −1 ). The C–H stretching region was found to be free from additives that were responsible for misclassification in other regions, making it a fruitful frequency range for future PCPW sorting technologies. The MIR classification of black plastics and polyethylene PCPW using ML autoencoders was also evaluated for the first time.more » « less
- 
            Steven, Blaire (Ed.)ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are common toxic and carcinogenic pollutants in marine ecosystems. Despite their prevalence in these habitats, relatively little is known about the natural microflora and biochemical pathways that contribute to their degradation. Approaches to investigate marine microbial PAH degraders often heavily rely on genetic biomarkers, which requires prior knowledge of specific degradative enzymes and genes encoding them. As such, these biomarker-reliant approaches cannot efficiently identify novel degradation pathways or degraders. Here, we screen 18 marine bacterial strains representing the Pseudomonadota, Bacillota, and Bacteroidota phyla for degradation of two model PAHs, pyrene (high molecular weight) and phenanthrene (low molecular weight). Using a qualitative PAH plate screening assay, we determined that 16 of 18 strains show some ability to degrade either or both compounds. Degradative ability was subsequently confirmed with a quantitative high-performance liquid chromatography approach, where an additional strain showed some degradation in liquid culture. Several members of the prominent marineRoseobacteraceaefamily degraded pyrene and phenanthrene with varying efficiency (1.2%–29.6% and 5.2%–52.2%, respectively) over 26 days. Described PAH genetic biomarkers were absent in all PAH degrading strains for which genome sequences are available, suggesting that these strains harbor novel transformation pathways. These results demonstrate the utility of culture-based approaches in expanding the knowledge landscape concerning PAH degradation in marine systems. IMPORTANCEPolycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    