skip to main content


Title: Engineered Matrices Enable the Culture of Human Patient‐Derived Intestinal Organoids
Abstract

Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin‐like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue‐derived, epithelial‐only intestinal organoids. HELP enables the encapsulation of dissociated patient‐derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal‐derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G’≈ 1 kPa), slower stress relaxation rate (t1/2≈ 18 h), and higher integrin ligand concentration (0.5 × 10−3–1 × 10−3mRGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal‐derived products or synthetic polyethylene glycol for potential clinical translation.

 
more » « less
Award ID(s):
1808415
NSF-PAR ID:
10376014
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
8
Issue:
10
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intestinal organoid protocols rely on the use of extracellular scaffolds, typically Matrigel, and upon switching from growth to differentiation promoting media, a symmetry breaking event takes place. During this stage, the first bud like structures analogous to crypts protrude from the central body and differentiation ensues. While organoids provide unparalleled architectural and functional complexity, this sophistication is also responsible for the high variability and lack of reproducibility of uniform crypt‐villus structures. If function follows form in organoids, such structural variability carries potential limitations for translational applications (e.g., drug screening). Consequently, there is interest in developing synthetic biomaterials to direct organoid growth and differentiation. It has been hypothesized that synthetic scaffold softening is necessary for crypt development, and these mechanical requirements raise the question, what compressive forces and subsequent relaxation are necessary for organoid maturation? To that end, allyl sulfide hydrogels are employed as a synthetic extracellular matrix mimic, but with photocleavable bonds that temporally regulate the material's bulk modulus. By varying the extent of matrix softening, it is demonstrated that crypt formation, size, and number per colony are functions of matrix softening. An understanding of the mechanical dependence of crypt architecture is necessary to instruct homogenous, reproducible organoids for clinical applications.

     
    more » « less
  2. Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines. 
    more » « less
  3. Abstract

    Organoids are lumen‐containing multicellular structures that recapitulate key features of the organs, and are increasingly used in models of disease, drug testing, and regenerative medicine. Recent work has used 3D culture models to form organoids from human induced pluripotent stem cells (hiPSCs) in reconstituted basement membrane (rBM) matrices. However, rBM matrices offer little control over the microenvironment. More generally, the role of matrix viscoelasticity in directing lumen formation remains unknown. Here, viscoelastic alginate hydrogels with independently tunable stress relaxation (viscoelasticity), stiffness, and arginine–glycine–aspartate (RGD) ligand density are used to study hiPSC morphogenesis in 3D culture. A phase diagram that shows how these properties control hiPSC morphogenesis is reported. Higher RGD density and fast stress relaxation promote hiPSC viability, proliferation, apicobasal polarization, and lumen formation, while slow stress relaxation at low RGD densities triggers hiPSC apoptosis. Notably, hiPSCs maintain pluripotency in alginate hydrogels for much longer times than is reported in rBM matrices. Lumen formation is regulated by actomyosin contractility and is accompanied by translocation of Yes‐associated protein (YAP) from the nucleus to the cytoplasm. The results reveal matrix viscoelasticity as a potent factor regulating stem cell morphogenesis and provide new insights into how engineered biomaterials may be leveraged to build organoids.

     
    more » « less
  4. Human induced pluripotent stem cell (hiPSC)-derived brain organoids can recapitulate the complex cytoarchitecture of the brain as well as the genetic and epigenetic footprint of human brain development. Although the brain organoids are able to mimic the structures and functions of brain in vitro, the 3D models have difficulty in integrating a complex vascular network that can provide the interaction with organoids. Here we report on a microfluidicbased three-dimensional, vascularized cortical organoid tissue construct consisting of 1) a perfused micro-vessel against an extracellular matrix (ECM), dynamic flow and membrane-free culture of the endothelial layer, 2) a sprouted vascular network using a combination of angiogenic factors, and 3) a vascularized hiPSCderived cortical organoid. We report on an optimization of density/stiffness of ECM to induce angiogenic sprouting and effect of angiogenic factors to trigger robust, rapid, and directional angiogenesis for concentration-driven and repetitive sprout formation. Vascularized network in the microfluidic device was further characterized in terms of morphology, directional alignment under perfusion, lumen formation, and permeability. HiPSCderived cortical organoid was generated, placed, and integrated into a vascularized network in the vascularized microfluidic device. We investigate how vascularized micro-vessels interact with cortical organoid. This paper further demonstrates the potential utility of a membrane-free vascularized cortical organoid in perfusion used to model Alzheimer’s disease and for toxicity screening of nerve agents. 
    more » « less
  5. The extracellular matrix (ECM) is a complex, hierarchical material containing structural and bioactive components. This complexity makes decoupling the effects of biomechanical properties and cell-matrix interactions difficult, especially when studying cellular processes in a 3D environment. Matrix mechanics and cell adhesion are both known regulators of specific cellular processes such as stem cell proliferation and differentiation. However, more information is required about how such variables impact various neural lineages that could, upon transplantation, therapeutically improve neural function after a central nervous system injury or disease. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are one biomaterial approach to meet these goals, consisting of a family of peptide sequences that assemble into physical hydrogels in physiological media. In this study, we studied our previously reported supramolecularly-assembling RAPID hydrogels functionalized with the ECM-derived cell-adhesive peptide ligands RGD, IKVAV, and YIGSR. Using molecular dynamics simulations and experimental rheology, we demonstrated that these integrin-binding ligands at physiological concentrations (3–12 mm) did not impact the assembly of the KYFIL peptide system. In simulations, molecular measures of assembly such as hydrogen bonding and pi-pi interactions appeared unaffected by cell-adhesion sequence or concentration. Visualizations of clustering and analysis of solvent-accessible surface area indicated that the integrin-binding domains remained exposed. KYFIL or AYFIL hydrogels containing 3 mm of integrin-binding domains resulted in mechanical properties consistent with their non-functionalized equivalents. This strategy of doping RAPID gels with cell-adhesion sequences allows for the precise tuning of peptide ligand concentration, independent of the rheological properties. The controllability of the RAPID hydrogel system provides an opportunity to investigate the effect of integrin-binding interactions on encapsulated neural cells to discern how hydrogel microenvironment impacts growth, maturation, or differentiation.

     
    more » « less