skip to main content


Title: Mixed-Carrier Communication for Technology Division Multiplexing
Recently, research on sixth-generation (6G) networks has gained significant interest. 6G is expected to enable a wide-range of applications that fifth-generation (5G) networks will not be able to serve reliably, such as tactile Internet. Additionally, 6G is expected to offer Terabits per second (Tbps) data rates, 10 times lower latency, and near 100% coverage, compared to 5G. Thus, 6G is expected to expand across all available spectrums including terahertz (THz) and optical frequency bands. In this manuscript, mixed-carrier communication (MCC) is investigated as a novel physical layer (PHY) design for 6G networks. The proposed MCC version in this study is based on visible light communication (VLC). MCC enables a unified transmission PHY design to connect devices with different complexities, simultaneously. The design trade-offs and the required signal-to-noise ratio (SNR) per individual modulation schemes embedded within MCC are investigated. The complexity analysis shows that a conventional optical OFDM receiver can capture the high-speed bit-stream embedded within MCC. For a forward error correction (FEC) bit-error-rate (BER) threshold of 3.8×10−3, MCC is optimized to maximize the spectral efficiency by embedding 2-beacon phase-shift keying (2-BnPSK) within an MCC envelope on top of 12 bits per beacon position modulation (BPM) symbol.  more » « less
Award ID(s):
1823225
NSF-PAR ID:
10297203
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Electronics
Volume:
10
Issue:
18
ISSN:
2079-9292
Page Range / eLocation ID:
2248
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybrid wireless networks are foreseen to play a major role in the visioning and planning of the sixth generation (6G) network. Most of the 6G applications are human-centric, and thus high security and privacy are key features. Recently, physical layer (PHY) security has become an emerging area of research. This work introduces a novel, to the best of our knowledge, PHY security approach called wireless link pairing (WiLP). In WiLP, signals received from both air interfaces in a hybrid radio frequency and optical network are required for successful signal reconstruction and processing at the receiver. The transmitted packets based on the IEEE 802.11 standards are redesigned, and improvements in performance are validated via simulations and experimental measurements using software-defined radio platforms. The obtained results demonstrate improvements in bit-error rate (BER) and the secrecy capacity for multiple modulation and coding schemes.

     
    more » « less
  2. The continuous increase in demanding for availability and ultra-reliability of low-latency and broadband wireless connections is instigating further research in the standardization of next-generation mobile systems. 6G networks, among other benefits, should offer global ubiquitous mobility thanks to the utilization of the Space segment as an intelligent yet autonomous ecosystem. In this framework, multi-layered networks will take charge of providing connectivity by implementing Cloud-Radio Access Network (C-RAN) functionalities on heterogeneous nodes distributed over aerial and orbital segments. Unmanned Aerial Vehicles (UAVs), High-Altitude Plat-forms (HAPs), and small satellites compose the Space ecosystem encompassing the 3D networks. Recently, a lot of interest has been raised about splitting operations to distribute baseband processing functionalities among such nodes to balance the computational load and reduce the power consumption. This work focuses on the hardware development of C-RAN physical (PHY-) layer operations to derive their computational and energy demand. More in detail, the 5G Downlink Shared Channel (DLSCH) and the Physical Downlink Shared Channel (PDSCH) are first simulated in MATLAB environment to evaluate the variation of computational load depending on the selected splitting options and number of antennas available at transmitter (TX) and receiver (RX) side. Then, the PHY-layer processing chain is software-implemented and the various splitting options are tested on low-cost processors, such as Raspberry Pi (RP) 3B+ and 4B. By overclocking the RPs, we compute the execution time and we derive the instruction count (IC) per program for each considered splitting option so to achieve the mega instructions per second (MIPS) for the expected processing time. Finally, by comparing the performance achieved by the employed RPs with that of Nvidia Jetson Nano (JN) processor used as benchmark, we shall discuss about size, weight, power and cost (SWaP-C)... 
    more » « less
  3. We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing (QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar decoder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of potential interest to the designers of tomorrow’s 6G wireless networks. 
    more » « less
  4. The scarcity of the optical power is the main challenge for underwater visible light communication. It becomes worst for communication across the air-water interface because of the reflection of light from the air-water interface. Differential pulse position modulation (DPPM) is one of the power efficient modulation techniques. In L-DPPM a block of M = log 2 L input data is mapped into one of the L distinct waveforms containing only one 'on' chip. The size of the DPPM packet is variable and depends on the value of input data and L, which makes error detection quite challenging. In this paper, we propose a frame structure that efficiently enables error detection within a packet for various symbol length, L, of DPPM. We also propose an algorithm using such a frame structure to enable effective detection of packet errors and for adaptively changing the value of L for optimal power efficiency while meeting a certain bound on the packet error rate (PER). We have named our proposed protocol as adaptive differential pulse position modulation (ADPPM). The Bit rate and PER have been studied for different signal-to-noise ratio (SNR) through simulation. A comparison between ADPPM and OOK, DPPM with fixed L is provided. 
    more » « less
  5. The advancement of future large‐scale wireless networks necessitates the development of cost‐effective and scalable security solutions. Specifically, physical layer (PHY) security has been put forth as a cost‐effective alternative to cryptographic mechanisms that can circumvent the need for explicit key exchange between communication devices. Herein, a space–time‐modulated digitally‐coded metamaterial (MTM) leaky wave antenna (LWA) is proposed that can enable PHY security by achieving the functionalities of directional modulation (DM) using a machine learning‐aided branch‐and‐bound (B&B) optimized coding sequence. Theoretically, it is first shown that the proposed space–time MTM antenna can achieve DM through both the spatial and spectral manipulation of the orthogonal frequency division multiplexing signal. Simulation results are then provided as proof‐of‐principle, demonstrating the applicability of the approach for achieving DM in various communication settings. Furthermore, a prototype of the proposed architecture controlled by a field‐programmable gate array is realized, which achieves DM via an optimized coding sequence carried out by the learning‐aided B&B algorithm corresponding to the states of the MTM LWA's unit cells. Experimental results confirm the theory behind the space–time‐modulated MTM LWA in achieving DM, which is observed via both the spectral harmonic patterns and bit error rate measurements.

     
    more » « less