skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Construction of equilibrium phase diagrams: Some errors to be avoided
Guided by the laws of thermodynamics, phase diagrams can be constructed to display First Order phase transformations (Gibbsian), as well as Higher Order phase transitions (non-Gibbsian). We discuss one and two-component alloy systems in this paper. The principles of the construction of phase diagrams are presented and some of the documented construction errors mentioned in the literature that can arise in phase diagram construction are noted and discussed. We go on to discuss what have been termed “probable errors” of construction. These are constructions which could only arise from the application of highly unlikely solution thermodynamic expressions. We then discuss the application of the Third Law of Thermodynamics to illustrate how phase boundary extrapolations to low temperatures can sometimes be shown to be in error. In addition, errors which may arise in the construction of phase diagrams that include higher order thermodynamic transitions (e.g. magnetic or atomic ordering) are briefly mentioned. These construction rules and comments should be of help to scientists who rely on phase diagrams in the development of materials. Also, we hope that it will be of help to those who utilize computer programs and compilations to display their modeled phase diagrams properly.  more » « less
Award ID(s):
1709247
PAR ID:
10297302
Author(s) / Creator(s):
Date Published:
Journal Name:
Progress in Materials Science
Volume:
120
ISSN:
0079-6425
Page Range / eLocation ID:
1-22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Density functional theory can be used in combination with computational thermodynamics to predict the pressure-temperature phase diagrams for chalcogenide perovskites. We report results using the Strongly Constrained and Appropriately Normed (SCAN) and the rVV10 density functionals, and compare to previously-published results using the PBEsol functional. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These phase diagrams can guide adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy (MBE). 
    more » « less
  2. Coupled oscillator networks often display transitions between qualitatively different phase-locked solutions—such as synchrony and rotating wave solutions—following perturbation or parameter variation. In the limit of weak coupling, these transitions can be understood in terms of commonly studied phase approximations. As the coupling strength increases, however, predicting the location and criticality of transition, whether continuous or discontinuous, from the phase dynamics may depend on the order of the phase approximation—or a phase description of the network dynamics that neglects amplitudes may become impossible altogether. Here we analyze synchronization transitions and their criticality systematically for varying coupling strength in theory and experiments with coupled electrochemical oscillators. First, we analyze bifurcations analysis of synchrony and splay states in an abstract phase model and discuss conditions under which synchronization transitions with different criticalities are possible. In particular, we show that such conditions can be understood by considering the relative contributions of higher harmonics to the phase dynamics. Second, we illustrate that transitions with different criticality indeed occur in experimental systems. Third, we highlight that the amplitude dynamics observed in the experiments can be captured in a numerical bifurcation analysis of delay-coupled oscillators. Our results showcase that reduced order phase models may miss important features that one would expect in the dynamics of the full system. Published by the American Physical Society2024 
    more » « less
  3. Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with a band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Here we use computational thermodynamics to predict the pressure–temperature phase diagrams for select chalcogenide perovskites. Our calculations incorporate formation energies calculated by density functional theory, and empirical estimates of heat capacities. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These results can guide the adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy. 
    more » « less
  4. We discuss how one uses the thermodynamic formalism to produce metrics on higher Teichmüller spaces. Our higher Teichmüller spaces will be spaces of Anosov representations of a word-hyperbolic group into a semi-simple Lie group. We begin by discussing our construction in the classical setting of the Teichmüller space of a closed orientable surface of genus at least 2, then we explain the construction for Hitchin components and finally we treat the general case. This paper surveys results of Bridgeman, Canary, Labourie and Sambarino, The pressure metric for Anosov representations , and discusses questions and open problems which arise. 
    more » « less
  5. Abstract We consider simple mean field continuum models for first order liquid–liquid demixing and solid–liquid phase transitions and show how the Maxwell construction at phase coexistence emerges on going from finite-size closed systems to the thermodynamic limit. The theories considered are the Cahn–Hilliard model of phase separation, which is also a model for the liquid-gas transition, and the phase field crystal model of the solid–liquid transition. Our results show that states comprising the Maxwell line depend strongly on the mean density with spatially localized structures playing a key role in the approach to the thermodynamic limit. 
    more » « less