skip to main content


Title: Differential Study of Projectile Coherence Effects on Double Capture Processes in p + Ar Collisions
We have measured differential yields for double capture and double capture accompanied by ionization in 75 keV p + Ar collisions. Data were taken for two different transverse projectile coherence lengths. A small effect of the projectile coherence properties on the yields were found for double capture, but not for double capture plus ionization. The results suggest that multiple projectile–target interactions can lead to a significant weakening of projectile coherence effects.  more » « less
Award ID(s):
1703109
NSF-PAR ID:
10297359
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Atoms
Volume:
8
Issue:
2
ISSN:
2218-2004
Page Range / eLocation ID:
10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ratios for target Ar K‐shell ionization associated with single and double electron capture, as well as the ratios corresponding to total capture and the projectile K x rays, were determined for 1.8‐ to 2.2‐MeV/u F7 + ,8 + ,9+projectiles. This work was performed at Western Michigan University with the tandem Van de Graaff accelerator. Coincidences between emitted K‐shell X‐rays (both target and projectile) and the corresponding charge‐changed particles were observed. The F9+Ar K X‐ray coincidence ratios for double to single capture are found to well exceed unity over the limited energy range of the measurements. Possible explanations for this anomalous behavior are discussed.

     
    more » « less
  2. Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s transverse coherence length must be considered in theoretical models. While traditional scattering theory often assumes that the projectile has an infinite coherence length, many studies have demonstrated that the effect of projectile coherence cannot be ignored, even when the projectile-target interaction is within the perturbative regime. This has led to a surge in studies that examine the effects of the projectile’s coherence length. Heavy-ion collisions are particularly well-suited to this because the projectile’s momentum can be large, leading to a small deBroglie wavelength. In contrast, electron projectiles that have larger deBroglie wavelengths and coherence effects can usually be safely ignored. However, the recent demonstration of sculpted electron wave packets opens the door to studying projectile coherence effects in electron-impact collisions. We report here theoretical triple differential cross-sections (TDCSs) for the electron-impact ionization of helium using Bessel and Laguerre-Gauss projectiles. We show that the projectile’s transverse coherence length affects the shape and magnitude of the TDCSs and that the atomic target’s position within the projectile beam plays a significant role in the probability of ionization. We also demonstrate that projectiles with large coherence lengths result in cross-sections that more closely resemble their fully coherent counterparts.

     
    more » « less
  3. Radiative double electron capture (RDEC), occurring when two electrons are captured to a projectile ion with the simultaneous emission of a single photon, has been investigated. RDEC can be considered as the time inverse process of double photoionization. Strong evidence for RDEC is found in F9++ N2collisions and additionally for one‐electron F8+for which the probability for the process is expected to be considerably smaller. Preliminary values for the cross sections for RDEC have been determined. A significant advantage of the gas target is that multiple‐collision effects seen for a solid target are avoided due to the single‐collision conditions that prevail for gas targets.

     
    more » « less
  4. Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35% to 67% RH) relative to dry conditions (under 5% RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime.

     
    more » « less
  5. We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction. 
    more » « less