skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level
Award ID(s):
1923589
PAR ID:
10297371
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Molecular Plant
Volume:
14
Issue:
3
ISSN:
1674-2052
Page Range / eLocation ID:
372 to 383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Plant mitochondrial DNA (mtDNA) can become damaged in many ways. A major repair mechanism is homologous recombination, which requires an undamaged DNA template. Presumably, this template comes from a different mitochondrion in the same cell. Plant mitochondria undergo fission and fusion to form transient networks which could allow the exchange of genetic information. To test this hypothesis, Chustecki et al. (2022) used msh1 mutants with defective DNA repair, and showed that mitochondrial interactions increased, revealing a link between the physical and genetic behavior of mitochondria. 
    more » « less
  3. Nitric oxide (NO) is a small molecule that plays important roles in biological systems and human diseases. The abundance of intracellular NO is tightly related to numerous biological processes. Due to cell heterogeneity, the intracellular NO amounts significantly vary from cell to cell, and therefore, any meaningful studies need to be conducted at the single-cell level. However, measuring NO in single cells is very challenging, primarily due to the extremely small size of single cells and reactive nature of NO. In the current studies, the quantitative reaction between NO and amlodipine, a compound containing the Hantzsch ester group, was performed in live cells. The product dehydro amlodipine was then detected by the Single-probe single-cell mass spectrometry technique to quantify NO in single cells. The experimental results indicated heterogeneous distributions of intracellular NO amounts in single cells with the existence of subpopulations. 
    more » « less