skip to main content

Title: Comparing the reliability of relative bird abundance indices from standardized surveys and community science data at finer resolutions
Biodiversity loss is a global ecological crisis that is both a driver of and response to environmental change. Understanding the connections between species declines and other components of human-natural systems extends across the physical, life, and social sciences. From an analysis perspective, this requires integration of data from different scientific domains, which often have heterogeneous scales and resolutions. Community science projects such as eBird may help to fill spatiotemporal gaps and enhance the resolution of standardized biological surveys. Comparisons between eBird and the more comprehensive North American Breeding Bird Survey (BBS) have found these datasets can produce consistent multi-year abundance trends for bird populations at national and regional scales. Here we investigate the reliability of these datasets for estimating patterns at finer resolutions, inter-annual changes in abundance within town boundaries. Using a case study of 14 focal species within Massachusetts, we calculated four indices of annual relative abundance using eBird and BBS datasets, including two different modeling approaches within each dataset. We compared the correspondence between these indices in terms of multi-year trends, annual estimates, and inter-annual changes in estimates at the state and town-level. We found correspondence between eBird and BBS multi-year trends, but this was not consistent across all species and diminished at finer, inter-annual temporal resolutions. We further show that standardizing modeling approaches can increase index reliability even between datasets at coarser temporal resolutions. Our results indicate that multiple datasets and modeling methods should be considered when estimating species population dynamics at finer temporal resolutions, but standardizing modeling approaches may improve estimate correspondence between abundance datasets. In addition, reliability of these indices at finer spatial scales may depend on habitat composition, which can impact survey accuracy.  more » « less
Award ID(s):
Author(s) / Creator(s):
Silva, Daniel de
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Datasets that monitor biodiversity capture information differently depending on their design, which influences observer behavior and can lead to biases across observations and species. Combining different datasets can improve our ability to identify and understand threats to biodiversity, but this requires an understanding of the observation bias in each. Two datasets widely used to monitor bird populations exemplify these general concerns: eBird is a citizen science project with high spatiotemporal resolution but variation in distribution, effort, and observers, whereas the Breeding Bird Survey (BBS) is a structured survey of specific locations over time. Analyses using these two datasets can identify contradictory population trends. To understand these discrepancies and facilitate data fusion, we quantify species‐level reporting differences across eBird and the BBS in three regions across the United States by jointly modeling bird abundances using data from both datasets. First, we fit a joint Species Distribution Model that accounts for environmental conditions and effort to identify reporting differences across the datasets. We then examine how these differences in reporting are related to species traits. Finally, we analyze species reported to one dataset but not the other and determine whether traits differ between reported and unreported species. We find that most species are reported more in the BBS than eBird. Specifically, we find that compared to eBird, BBS observers tend to report higher counts of common species and species that are usually detected by sound. We also find that species associated with water are reported less in the BBS. Species typically identified by sound are reported more at sunrise than later in the morning. Our results quantify reporting differences in eBird and the BBS to enhance our understanding of how each captures information and how they should be used. The reporting rates we identify can also be incorporated into observation models through detectability or effort to improve analyses across species and datasets. The method demonstrated here can be used to compare reporting rates across any two or more datasets to examine biases.

    more » « less
  2. Abstract

    Aircraft collisions with birds span the entire history of human aviation, including fatal collisions during some of the first powered human flights. Much effort has been expended to reduce such collisions, but increased knowledge about bird movements and species occurrence could dramatically improve decision support and proactive measures to reduce them. Migratory movements of birds pose a unique, often overlooked, threat to aviation that is particularly difficult for individual airports to monitor and predict the occurrence of birds vary extensively in space and time at the local scales of airport responses.

    We use two publicly available datasets, radar data from the US NEXRAD network characterizing migration movements and eBird data collected by citizen scientists to map bird movements and species composition with low human effort expenditures but high temporal and spatial resolution relative to other large‐scale bird survey methods. As a test case, we compare results from weather radar distributions and eBird species composition with detailed bird strike records from three major New York airports.

    We show that weather radar‐based estimates of migration intensity can accurately predict the probability of bird strikes, with 80% of the variation in bird strikes across the year explained by the average amount of migratory movements captured on weather radar. We also show that eBird‐based estimates of species occurrence can, using species’ body mass and flocking propensity, accurately predict when most damaging strikes occur.

    Synthesis and applications. By better understanding when and where different bird species occur, airports across the world can predict seasonal periods of collision risks with greater temporal and spatial resolution; such predictions include potential to predict when the most severe and damaging strikes may occur. Our results highlight the power of federating datasets with bird movement and distribution data for developing better and more taxonomically and ecologically tuned models of likelihood of strikes occurring and severity of strikes.

    more » « less
  3. fine resolutions but available training data is scarce. In this paper, we propose classification algorithms that leverage supervision from coarser resolutions to help train models on finer resolutions. The different resolutions are modeled as different views of the data in a multi-view framework that exploits the complementarity of features across different views to improve models on both views. Unlike traditional multi-view learning problems, the key challenge in our case is that there is no one-to-one correspondence between instances across different views in our case, which requires explicit modeling of the correspondence of instances across resolutions. We propose to use the features of instances at different resolutions to learn the correspondence between instances across resolutions using attention mechanism. Experiments on the real-world application of mapping urban areas using satellite observations and sentiment classification on text data shows the effectiveness of the proposed methods. 
    more » « less
  4. Observational studies have not yet shown that environmental variables can explain pervasive nonlinear patterns of species abundance, because those patterns could result from (indirect) interactions with other species (e.g., competition), and models only estimate direct responses. The experiments that could extract these indirect effects at regional to continental scales are not feasible. Here, a biophysical approach quantifies environment– species interactions (ESI) that govern community change from field data. Just as species interactions depend on population abundances, so too do the effects of environment, as when drought is amplified by competition. By embedding dynamic ESI within framework that admits data gathered on different scales, we quantify responses that are induced indirectly through other species, including probabilistic uncertainty in parameters, model specification, and data. Simulation demonstrates that ESI are needed for accurate interpretation. Analysis demonstrates how nonlinear responses arise even when their direct responses to environment are linear. Applications to experimental lakes and the Breeding Bird Survey (BBS) yield contrasting estimates of ESI. In closed lakes, interactions involving phytoplankton and their zooplankton grazers play a large role. By contrast, ESI are weak in BBS, as expected where year-to-year movement degrades the link between local population growth and species interactions. In both cases, nonlinear responses to environmental gradients are induced by interactions between species. Stability analysis indicates stability in the closed-system lakes and instability in BBS. The probabilistic framework has direct application to conservation planning that must weigh risk assessments for entire habitats and communities against competing interests.

    more » « less
  5. Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryland carbon dynamics, particularly as the transitory response and rapid turnover rates of semi-arid systems may limit their function as a carbon sink over multi-decadal scales. We quantified aboveground biomass carbon (AGC; inferred from SMOS L-band vegetation optical depth) and gross primary productivity (GPP; from PML-v2 inferred from MODIS observations) and tested their spatial and temporal correspondence with estimates from the TRENDY ensemble of LSMs. We found strong correspondence in GPP between LSMs and PML-v2 both in spatial patterns (Pearson’s r = 0.9 for TRENDY-mean) and in inter-annual variability, but not in trends. Conversely, for AGC we found lesser correspondence in space (Pearson’s r = 0.75 for TRENDY-mean, strong biases for individual models) and in the magnitude of inter-annual variability compared to satellite retrievals. These disagreements likely arise from limited representation of ecosystem responses to plant water availability, fire, and photodegradation that drive dryland carbon dynamics. We assessed inter-model agreement and drivers of long-term change in carbon stocks over centennial timescales. This analysis suggested that the simulated trend of increasing carbon stocks in drylands is in soils and primarily driven by increased productivity due to CO 2 enrichment. However, there is limited empirical evidence of this 50-year sink in dryland soils. Our findings highlight important uncertainties in simulations of dryland ecosystems by current LSMs, suggesting a need for continued model refinements and for greater caution when interpreting LSM estimates with regards to current and future carbon dynamics in drylands and by extension the global carbon cycle. 
    more » « less