skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing the reliability of relative bird abundance indices from standardized surveys and community science data at finer resolutions
Biodiversity loss is a global ecological crisis that is both a driver of and response to environmental change. Understanding the connections between species declines and other components of human-natural systems extends across the physical, life, and social sciences. From an analysis perspective, this requires integration of data from different scientific domains, which often have heterogeneous scales and resolutions. Community science projects such as eBird may help to fill spatiotemporal gaps and enhance the resolution of standardized biological surveys. Comparisons between eBird and the more comprehensive North American Breeding Bird Survey (BBS) have found these datasets can produce consistent multi-year abundance trends for bird populations at national and regional scales. Here we investigate the reliability of these datasets for estimating patterns at finer resolutions, inter-annual changes in abundance within town boundaries. Using a case study of 14 focal species within Massachusetts, we calculated four indices of annual relative abundance using eBird and BBS datasets, including two different modeling approaches within each dataset. We compared the correspondence between these indices in terms of multi-year trends, annual estimates, and inter-annual changes in estimates at the state and town-level. We found correspondence between eBird and BBS multi-year trends, but this was not consistent across all species and diminished at finer, inter-annual temporal resolutions. We further show that standardizing modeling approaches can increase index reliability even between datasets at coarser temporal resolutions. Our results indicate that multiple datasets and modeling methods should be considered when estimating species population dynamics at finer temporal resolutions, but standardizing modeling approaches may improve estimate correspondence between abundance datasets. In addition, reliability of these indices at finer spatial scales may depend on habitat composition, which can impact survey accuracy.  more » « less
Award ID(s):
1940276
PAR ID:
10297385
Author(s) / Creator(s):
;
Editor(s):
Silva, Daniel de
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
9
ISSN:
1932-6203
Page Range / eLocation ID:
e0257226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long‐term monitoring of bird populations across scales is important in evaluating conservation targets and creating effective conservation strategies. For nearly six decades, the Breeding Bird Survey (BBS) has served as the primary broad‐scaled source of relative abundance trends of swallows and martins in North America. Recently, however, it has become possible to obtain breeding population trends using semi‐structured eBird community science data. Moreover, weather surveillance radar data of swallow and martin roosting populations yield a third complementary source of trend information.Using results from these three approaches, we propose a novel method of spatially combining estimates of percent change per year into a probability of directional agreement and/or disagreement that describes (1) the direction of the trend within a given region, (2) the amount of evidence associated with the estimate and (3) how much uncertainty surrounds it. We focus our efforts on an area of high Hirundinidae concentration in the North American Great Lakes region and predict trends from 2012 to 2022.We found a high probability of agreement between all three sources about observed declines in swallow and martin trends in the region surrounding Lake Ontario and to the west of Lake Michigan. Focusing future research on these regions could improve our understanding of these declines and help build more targeted conservation initiatives.Synthesis and applications. Our data integration methodology allows managers to identify regions that accumulate evidence of concerning trends across multiple wildlife monitoring schemes. These regions can thus be prioritized in conservation and management efforts. This approach can be generalized to other sources of long‐term monitoring data of different species, at different stages of their annual cycle, in any geographic location. 
    more » « less
  2. Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic underpinnings remain poorly understood. A key question is whether spatial and annual variation in avian population dynamics is driven primarily by variation in breeding season recruitment or by variation in overwinter survival. We present a method using large‐scale volunteer‐collected data from project eBird to develop species‐specific indices of net population change as proxies for survival and recruitment, based on twice‐annual, rangewide snapshots of relative abundance in spring and fall. We demonstrate the use of these indices by examining spatially explicit annual variation in survival and recruitment in two well‐surveyed nonmigratory North American species, Carolina wrenThryothorus ludovicianusand northern cardinalCardinalis cardinalis. We show that, while interannual variation in both survival and recruitment is slight for northern cardinal, eBird abundance data reveal strong and geographically coherent signals of interannual variation in the overwinter survival of Carolina wren. As predicted, variation in wintertime survival dominates overall interannual population fluctuations of wrens and is correlated with winter temperature and snowfall in the northeastern United States, but not the southern United States. This study demonstrates the potential of participatory science (also known as citizen science) datasets like eBird for inferring variation in demographic rates and introduces a new complementary approach towards illuminating the macrodemography of North American birds at comprehensive continental extents. 
    more » « less
  3. Abstract Sustaining biodiversity requires measuring the interacting spatial and temporal processes by which environmental factors shape wildlife community assembly. Declines in bird communities due to urban development and changing climate conditions are widely documented. However, the combined impacts of multiple environmental stressors on biodiversity remain unclear, especially in urbanized desert ecosystems. This is largely due to a lack of data at the scales necessary for predicting the consequences of environmental change for diverse species and functional groups, particularly those that provide ecosystem services such as seed dispersal, pest control, and pollination. Trends in the prevalence and diversity of different functional groups contribute to understanding how changes in bird communities impact well‐being through the lens of ecosystem services. Across the rapidly developing drylands of the metropolitan Phoenix, Arizona, USA, we ask the following question: How have inter‐ and intra‐annual landscape changes associated with urbanization and climate shaped the dynamic characteristics of bird communities, specifically the abundance and richness of species and their functional groups? We analyzed long‐term drivers of bird communities by combining a two‐decade, multi‐season spatial dataset of environmental conditions (urbanization, vegetation, temperature, etc.) with biotic data (species richness and abundance) collected seasonally during the same time periods (winter and spring; 2001–2016). Results show that increased impervious surface area and land surface temperature were negatively associated with overall bird abundance and species richness across the study period, especially during winter. However, these relationships varied among functional groups, with potentially mixed outcomes for ecosystem services and disservices provided by urban biodiversity. By improving knowledge of long‐term trends in multiple environmental drivers that shape wildlife community dynamics, these results facilitate effective evaluation of how landscape management practices in drylands influence the outcomes of evolving human‐wildlife relationships. 
    more » « less
  4. Abstract Aircraft collisions with birds span the entire history of human aviation, including fatal collisions during some of the first powered human flights. Much effort has been expended to reduce such collisions, but increased knowledge about bird movements and species occurrence could dramatically improve decision support and proactive measures to reduce them. Migratory movements of birds pose a unique, often overlooked, threat to aviation that is particularly difficult for individual airports to monitor and predict the occurrence of birds vary extensively in space and time at the local scales of airport responses.We use two publicly available datasets, radar data from the US NEXRAD network characterizing migration movements and eBird data collected by citizen scientists to map bird movements and species composition with low human effort expenditures but high temporal and spatial resolution relative to other large‐scale bird survey methods. As a test case, we compare results from weather radar distributions and eBird species composition with detailed bird strike records from three major New York airports.We show that weather radar‐based estimates of migration intensity can accurately predict the probability of bird strikes, with 80% of the variation in bird strikes across the year explained by the average amount of migratory movements captured on weather radar. We also show that eBird‐based estimates of species occurrence can, using species’ body mass and flocking propensity, accurately predict when most damaging strikes occur.Synthesis and applications. By better understanding when and where different bird species occur, airports across the world can predict seasonal periods of collision risks with greater temporal and spatial resolution; such predictions include potential to predict when the most severe and damaging strikes may occur. Our results highlight the power of federating datasets with bird movement and distribution data for developing better and more taxonomically and ecologically tuned models of likelihood of strikes occurring and severity of strikes. 
    more » « less
  5. Observational studies have not yet shown that environmental variables can explain pervasive nonlinear patterns of species abundance, because those patterns could result from (indirect) interactions with other species (e.g., competition), and models only estimate direct responses. The experiments that could extract these indirect effects at regional to continental scales are not feasible. Here, a biophysical approach quantifies environment– species interactions (ESI) that govern community change from field data. Just as species interactions depend on population abundances, so too do the effects of environment, as when drought is amplified by competition. By embedding dynamic ESI within framework that admits data gathered on different scales, we quantify responses that are induced indirectly through other species, including probabilistic uncertainty in parameters, model specification, and data. Simulation demonstrates that ESI are needed for accurate interpretation. Analysis demonstrates how nonlinear responses arise even when their direct responses to environment are linear. Applications to experimental lakes and the Breeding Bird Survey (BBS) yield contrasting estimates of ESI. In closed lakes, interactions involving phytoplankton and their zooplankton grazers play a large role. By contrast, ESI are weak in BBS, as expected where year-to-year movement degrades the link between local population growth and species interactions. In both cases, nonlinear responses to environmental gradients are induced by interactions between species. Stability analysis indicates stability in the closed-system lakes and instability in BBS. The probabilistic framework has direct application to conservation planning that must weigh risk assessments for entire habitats and communities against competing interests. 
    more » « less