skip to main content

Title: Online Delivery of Social Media Posts to Appropriate First Responders for Disaster Response
Delivering the right information to the right people in a timely manner can greatly improve outcomes and save lives in emergency response. A communication framework that flexibly and efficiently brings victims, volunteers, and first responders together for timely assistance can be very helpful. With the burden of more frequent and intense disaster situations and first responder resources stretched thin, people increasingly depend on social media for communicating vital information. This paper proposes ONSIDE, a framework for coordination of disaster response leveraging social media, integrating it with Information-Centric dissemination for timely and relevant dissemination. We use a graph-based pub/sub namespace that captures the complex hierarchy of the incident management roles. Regular citizens and volunteers using social media may not know of or have access to the full namespace. Thus, we utilize a social media engine (SME) to identify disaster-related social media posts and then automatically map them to the right name(s) in near-real-time. Using NLP and classification techniques, we direct the posts to appropriate first responder(s) that can help with the posted issue. A major challenge for classifying social media in real-time is the labeling effort for model training. Furthermore, as disasters hits, there may be not enough data points available more » for labeling, and there may be concept drift in the content of the posts over time. To address these issues, our SME employs stream-based active learning methods, adapting as social media posts come in. Preliminary evaluation results show the proposed solution can be effective. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
In 3rd International Workshop on Emergency Response Technologies and Services in Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking (ICDCN ’21)
Page Range or eLocation-ID:
13 to 18
Sponsoring Org:
National Science Foundation
More Like this
  1. During disasters, it is critical to deliver emergency information to appropriate first responders. Name-based information delivery provides efficient, timely dissemination of relevant content to first responder teams assigned to different incident response roles. People increasingly depend on social media for communicating vital information, using free-form text. Thus, a method that delivers these social media posts to the right first responders can significantly improve outcomes. In this paper, we propose FLARE, a framework using 'Social Media Engines' (SMEs) to map social media posts (SMPs), such as tweets, to the right names. SMEs perform natural language processing-based classification and exploit several machine learning capabilities, in an online real-time manner. To reduce the manual labeling effort required for learning during the disaster, we leverage active learning, complemented by dispatchers with specific domain-knowledge performing limited labeling. We also leverage federated learning across various public-safety departments with specialized knowledge to handle notifications related to their roles in a cooperative manner. We implement three different classifiers: for incident relevance, organization, and fine-grained role prediction. Each class is associated with a specific subset of the namespace graph. The novelty of our system is the integration of the namespace with federated active learning and inference procedures to identifymore »and deliver vital SMPs to the right first responders in a distributed multi-organization environment, in real-time. Our experiments using real-world data, including tweets generated by citizens during the wildfires in California in 2018, show our approach outperforming both a simple keyword-based classification and several existing NLP-based classification techniques.« less
  2. With the increase of natural disasters all over the world, we are in crucial need of innovative solutions with inexpensive implementations to assist the emergency response systems. Information collected through conventional sources (e.g., incident reports, 911 calls, physical volunteers, etc.) are proving to be insufficient [1]. Responsible organizations are now leaning towards research grounds that explore digital human connectivity and freely available sources of information. U.S. Geological Survey and Federal Emergency Management Agency (FEMA) introduced Critical Lifeline (CLL) s which identifies the most significant areas that require immediate attention in case of natural disasters. These organizations applied crowdsourcing by connecting digital volunteer networks to collect data on the critical lifelines from data sources including social media [3], [4], [5]. In the past couple of years, during some of the deadly hurricanes (e.g., Harvey, IRMA, Maria, Michael, Florence, etc.), people took on different social media platforms like never seen before, in search of help for rescue, shelter, and relief. Their posts reflect crisis updates and their real-time observations on the devastation that they witness. In this paper, we propose a methodology to build and analyze time-frequency features of words on social media to assist the volunteer networks in identifying the contextmore »before, during and after a natural disaster and distinguishing contexts connected to the critical lifelines. We employ Continuous Wavelet Transform to help create word features and propose two ways to reduce the dimensions which we use to create word clusters to identify themes of conversations associated with stages of a disaster and these lifelines. We compare two different methodologies of wavelet features and word clusters both qualitatively and quantitatively, to show that wavelet features can identify and separate context without using semantic information as inputs.« less
  3. Timely delivery of the right information to the right first responders can help improve the outcomes of their efforts and save lives. With social media communications (Twitter, Facebook, etc.) being increasingly used to send and get information during disasters, forwarding them to the right first responders in a timely manner can be very helpful. We use Natural Language Processing and Machine Learning, to steer the social media posts to the most appropriate first responder.An important goal is to retrieve and deliver only the critical, actionable information to first responders in real-time. We examine the overall pipeline starting from retrieving tweets from the social media platforms, to their classification, and dissemination to first responders.We propose improvements in the area of data retrieval, relevance prediction and prioritizing information sent to the first responders by fusing NLP and ML classification techniques thus improving emergency response. We demonstrate the effectiveness of our proposed approach in retrieving and extracting 37,295 actionable tweets related to the IDA hurricane that occurred in the US in Aug.–Sep, 2021.
  4. Timely, flexible and accurate information dissemination can make a life-and-death difference in managing disasters. Complex command structures and information organization make such dissemination challenging. Thus, it is vital to have an architecture with appropriate naming frameworks, adaptable to the changing roles of participants, focused on content rather than network addresses. To address this, we propose POISE, a name-based and recipient-based publish/subscribe architecture for efficient content dissemination in disaster management. POISE proposes an information layer, improving on state-of-the-art Information-Centric Networking (ICN) solutions such as Named Data Networking (NDN) in two major ways: 1) support for complex graph-based namespaces, and 2) automatic name-based load-splitting. To capture the complexity and dynamicity of disaster response command chains and information flows, POISE proposes a graph-based naming framework, leveraged in a dissemination protocol which exploits information layer rendezvous points (RPs) that perform name expansions. For improved robustness and scalability, POISE allows load-sharing via multiple RPs each managing a subset of the namespace graph. However, excessive workload on one RP may turn it into a “hot spot”, thus impeding performance and reliability. To eliminate such traffic concentration, we propose an automatic load-splitting mechanism, consisting of a namespace graph partitioning complemented by a seamless, loss-less core migration procedure.more »Due to the nature of our graph partitioning and its complex objectives, off-the-shelf graph partitioning, e.g., METIS, is inadequate. We propose a hybrid partitioning solution, consisting of an initial and a refinement phase. Our simulation results show that POISE outperforms state-of-the-art solutions, demonstrating its effectiveness in timely delivery and load-sharing.« less
  5. Name-based pub/sub allows for efficient and timely delivery of information to interested subscribers. A challenge is assigning the right name to each piece of content, so that it reaches the most relevant recipients. An example scenario is the dissemination of social media posts to first responders during disasters. We present FLARE, a framework using federated active learning assisted by naming. FLARE integrates machine learning and name-based pub/sub for accurate timely delivery of textual information. In this demo, we show FLARE’s operation.