skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wasserstein Distributionally Robust Inverse Multiobjective Optimization
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the performance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem.  more » « less
Award ID(s):
1931794
PAR ID:
10297593
Author(s) / Creator(s):
;
Date Published:
Journal Name:
the AAAI Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the performance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem. 
    more » « less
  2. Summary Estimators based on Wasserstein distributionally robust optimization are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance from the underlying empirical measure in a Wasserstein sense. While motivated by the need to identify optimal model parameters or decision choices that are robust to model misspecification, these distributionally robust estimators recover a wide range of regularized estimators, including square-root lasso and support vector machines, among others. This paper studies the asymptotic normality of these distributionally robust estimators as well as the properties of an optimal confidence region induced by the Wasserstein distributionally robust optimization formulation. In addition, key properties of min-max distributionally robust optimization problems are also studied; for example, we show that distributionally robust estimators regularize the loss based on its derivative, and we also derive general sufficient conditions which show the equivalence between the min-max distributionally robust optimization problem and the corresponding max-min formulation. 
    more » « less
  3. null (Ed.)
    We consider the parameter estimation problem of a probabilistic generative model prescribed using a natural exponential family of distributions. For this problem, the typical maximum likelihood estimator usually overfits under limited training sample size, is sensitive to noise and may perform poorly on downstream predictive tasks. To mitigate these issues, we propose a distributionally robust maximum likelihood estimator that minimizes the worst-case expected log-loss uniformly over a parametric Kullback-Leibler ball around a parametric nominal distribution. Leveraging the analytical expression of the Kullback-Leibler divergence between two distributions in the same natural exponential family, we show that the min-max estimation problem is tractable in a broad setting, including the robust training of generalized linear models. Our novel robust estimator also enjoys statistical consistency and delivers promising empirical results in both regression and classification tasks. 
    more » « less
  4. Problem definition: Data analytics models and machine learning algorithms are increasingly deployed to support consequential decision-making processes, from deciding which applicants will receive job offers and loans to university enrollments and medical interventions. However, recent studies show these models may unintentionally amplify human bias and yield significant unfavorable decisions to specific groups. Methodology/results: We propose a distributionally robust classification model with a fairness constraint that encourages the classifier to be fair in the equality of opportunity criterion. We use a type-[Formula: see text] Wasserstein ambiguity set centered at the empirical distribution to represent distributional uncertainty and derive a conservative reformulation for the worst-case equal opportunity unfairness measure. We show that the model is equivalent to a mixed binary conic optimization problem, which standard off-the-shelf solvers can solve. We propose a convex, hinge-loss-based model for large problem instances whose reformulation does not incur binary variables to improve scalability. Moreover, we also consider the distributionally robust learning problem with a generic ground transportation cost to hedge against the label and sensitive attribute uncertainties. We numerically examine the performance of our proposed models on five real-world data sets related to individual analysis. Compared with the state-of-the-art methods, our proposed approaches significantly improve fairness with negligible loss of predictive accuracy in the testing data set. Managerial implications: Our paper raises awareness that bias may arise when predictive models are used in service and operations. It generally comes from human bias, for example, imbalanced data collection or low sample sizes, and is further amplified by algorithms. Incorporating fairness constraints and the distributionally robust optimization (DRO) scheme is a powerful way to alleviate algorithmic biases. Funding: This work was supported by the National Science Foundation [Grants 2342505 and 2343869] and the Chinese University of Hong Kong [Grant 4055191]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.0230 . 
    more » « less
  5. We consider the problem of learning the exact skeleton of general discrete Bayesian networks from potentially corrupted data. Building on distributionally robust optimization and a regression approach, we propose to optimize the most adverse risk over a family of distributions within bounded Wasserstein distance or KL divergence to the empirical distribution. The worst-case risk accounts for the effect of outliers. The proposed approach applies for general categorical random variables without assuming faithfulness, an ordinal relationship or a specific form of conditional distribution. We present efficient algorithms and show the proposed methods are closely related to the standard regularized regression approach. Under mild assumptions, we derive non-asymptotic guarantees for successful structure learning with logarithmic sample complexities for bounded-degree graphs. Numerical study on synthetic and real datasets validates the effectiveness of our method. 
    more » « less