Whether ortho (sniffing odors) versus retro (exhalation and eating) is encoded from the olfactory bulb to other brain areas is not completely known. Using multielectrode array recordings in anesthetized rats, we show that the olfactory bulb transmits this information downstream via spikes. Altering inhibition degrades ortho/retro information on average. We use theory and computation to explain our results, which should have implications on cortical processing considering that only food odors occur retronasally.
more »
« less
Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models
The majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb ( OB ) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells ( MC ) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.e., noise correlations). Differences in spiking activity often have implications for sensory coding, thus we develop a single-compartment biophysical OB model that is able to reproduce key properties of important OB cell types. Prior experiments in olfactory receptor neurons ( ORN ) showed retro stimulation yields slower and spatially smaller ORN inputs than with ortho, yet whether this is consequential for OB activity remains unknown. Indeed with these specifications for ORN inputs, our OB model captures the salient trends in our OB data. We also analyze how first and second order ORN input statistics dynamically transfer to MC spiking statistics with a phenomenological linear-nonlinear filter model, and find that retro inputs result in larger linear filters than ortho inputs. Finally, our models show that the temporal profile of ORN is crucial for capturing our data and is thus a distinguishing feature between ortho and retro stimulation, even at the OB. Using data-driven modeling, we detail how ORN inputs result in differences in OB dynamics and MC spiking statistics. These differences may ultimately shape how ortho and retro odors are coded.
more »
« less
- PAR ID:
- 10297629
- Editor(s):
- Migliore, Michele
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 17
- Issue:
- 9
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1009169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nasal turbinals, scrolled thin bones of the nasal cavity, increase surface area for conditioning inspired air or for olfaction in mammals. To assess function in Eptesicus fuscus (Big Brown Bat), we quantify surface area of respiratory and olfactory turbinals from birth to adult size, using data from microCT scans before and after iodine staining. Surface area of each turbinal is significantly correlated with postnatal age and cranial length. The surface area of the maxilloturbinal and first ethmoturbinal (ET I) grows faster, relative to skull size, than surface area of caudal ethmoturbinals or the frontoturbinal. Histological examination of selected specimens reveals ET I grows disproportionately more presumptive respiratory mucosa than olfactory mucosa, supporting the hypothesis that ET I has a dual function. Lastly, we find that distribution of olfactory mucosa in the caudal nasal cavity diminishes with age. Our findings suggest a reduction in olfactory function in E. fuscus, perhaps due to a diminished role in food acquisition by this aerial insectivore.more » « less
-
Different coding strategies are used to represent odor information at various stages of the mammalian olfactory system. A temporal latency code represents odor identity in olfactory bulb (OB), but this temporal information is discarded in piriform cortex (PCx) where odor identity is instead encoded through ensemble membership. We developed a spiking PCx network model to understand how this transformation is implemented. In the model, the impact of OB inputs activated earliest after inhalation is amplified within PCx by diffuse recurrent collateral excitation, which then recruits strong, sustained feedback inhibition that suppresses the impact of later-responding glomeruli. We model increasing odor concentrations by decreasing glomerulus onset latencies while preserving their activation sequences. This produces a multiplexed cortical odor code in which activated ensembles are robust to concentration changes while concentration information is encoded through population synchrony. Our model demonstrates how PCx circuitry can implement multiplexed ensemble-identity/temporal-concentration odor coding.more » « less
-
Abstract Nasal anatomy in rodents is well-studied, but most current knowledge is based on small-bodied muroid species. Nasal anatomy and histology of hystricognaths, the largest living rodents, remains poorly understood. Here, we describe the nasal cavity of agoutis ( Dasyprocta spp.), the first large-bodied South American rodents to be studied histologically throughout the nasal cavity. Two adult agoutis were studied using microcomputed tomography, and in one of these, half the snout was serially sectioned and stained for microscopic study. Certain features are notable in Dasyprocta . The frontal recess has five turbinals within it, the most in this space compared to other rodents that have been studied. The nasoturbinal is particularly large in dorsoventral and rostrocaudal dimensions and is entirely non-olfactory in function, in apparent contrast to known muroids. Whether this relates solely to body size scaling or perhaps also relates to directing airflow or conditioning inspired air requires further study. In addition, olfactory epithelium appears more restricted to the olfactory and frontal recesses compared to muroids. At the same time, the rostral tips of the olfactory turbinals bear at least some non-olfactory epithelium. The findings of this study support the hypothesis that turbinals are multifunctional structures, indicating investigators should use caution when categorizing turbinals as specialized for one function (e.g., olfaction or respiratory air-conditioning). Caution may be especially appropriate in the case of large-bodied mammals, in which the different scaling characteristics of respiratory and olfactory mucosa result in relative more of the former type as body size increases.more » « less
-
Vertebrate olfactory receptors (OR) are directly exposed to microorganisms, such as viruses, due to their direct contact with the external environment. A previous study showed that nasal delivery of rhabdovirus IHNV (Infectious hematopoietic necrosis virus) in fish activate nasal immune responses marked by an increase of chemokine CCL19 and prostaglandin synthase expression in olfactory epithelia (OE), and infiltration of CD8+ cells in the OE. We hypothesize that nasal immune responses are activated by action potential signals generated by activated olfactory receptor (OR) neurons in the OE and olfactory bulb (OB). Moreover, this neural circuit can be traced from a specific OR cell type (crypt cell) in the nose to a specific site in the olfactory bulb. We tested our hypothesis by measuring olfactory responses to live attenuated IHNV virus by electro-olfactogram (EOG). We also visualized the IHNV neural circuit after activation of specific OR, and consequent internalization of molecular receptor and IHNV mixed with Alexa dextran 488 3000 MW. Our results showed different EOG olfactory responses to live attenuated IHNV and to the medium where the virus was grown (negative control) in rainbow trout. Olfactory responses followed a dose-response pattern typical of OR. Cross adaptation studies also showed that live attenuated IHNV activates a set of receptors different from those activated by virus-free supernatants. Recordings of the OB responses by electroencephalogram are under development. Preliminary tracings show fluorescent oval shaped OR in the apical border of the olfactory lamella (putative crypt cells) that extended to the ventral side of the olfactory bulb. This neural circuit differs from those visualized after exposure of trout OE to the food odorant serine. Combined, our results adds evidence for a new olfactory function in trout, which serves as a first layer of pathogen detection in vertebrates. Support or Funding Information This material is based upon work supported by the National Science Foundation under Grant No. 1755348 This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.more » « less
An official website of the United States government

