- PAR ID:
- 10297805
- Date Published:
- Journal Name:
- eLife
- Volume:
- 10
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Local substrate stiffness is one of the major mechanical inputs for tissue organization during its development and remodeling. It is widely recognized that adherent cells use transmembrane proteins (integrins) at focal adhesions to translate ECM mechanical cues into intracellular bioprocess. Here we show that epithelial cells respond to substrate stiffening primarily via actin cytoskeleton organization, that requires activation of mechanosensitive Piezo1 channels. Piezo1 Knockdown cells eliminated the actin stress fibers that formed on stiff substrates, while it had minimal effect on cell morphology and spreading area. Inhibition of Piezo1 channels with GsMTx4 also significantly reduced stiffness-induced F-actin reorganization, suggesting Piezo1 mediated cation current plays a role. Activation of Piezo1 channels with specific agonist (Yoda1) resulted in thickening of F-actin fibers and enlargement of FAs on stiffer substrates, whereas it did not affect the formation of nascent FAs that facilitate spreading on the soft substrates. These results demonstrate that Piezo1 functions as a force sensor that couples with actin cytoskeleton to distinguish the substrate stiffness and facilitate epithelial adaptive remodeling.more » « less
-
null (Ed.)Cells in vivo generate mechanical traction on the surrounding 3D extracellular matrix (ECM) and neighboring cells. Such traction and biochemical cues may remodel the matrix, e.g., increase stiffness, which, in turn, influences cell functions and forces. This dynamic reciprocity mediates development and tumorigenesis. Currently, there is no method available to directly quantify single-cell forces and matrix remodeling in 3D. Here, we introduce a method to fulfill this long-standing need. We developed a high-resolution microfabricated sensor that hosts a 3D cell-ECM tissue formed by self-assembly. This sensor measures cell forces and tissue stiffness and can apply mechanical stimulation to the tissue. We measured single and multicellular force dynamics of fibroblasts (3T3), human colon (FET) and lung (A549) cancer cells, and cancer-associated fibroblasts (CAF05) with 1-nN resolution. Single cells show notable force fluctuations in 3D. FET/CAF coculture system, mimicking cancer tumor microenvironment, increased tissue stiffness by three times within 24 hours.more » « less
-
Abstract Cell development and behavior are driven by internal genetic programming, but the external microenvironment is increasingly recognized as a significant factor in cell differentiation, migration, and in the case of cancer, metastatic progression. Yet it remains unclear how the microenvironment influences cell processes, especially when examining cell motility. One factor that affects cell motility is cell mechanics, which is known to be related to substrate stiffness. Examining how cells interact with each other in response to mechanically differential substrates would allow an increased understanding of their coordinated cell motility. In order to probe the effect of substrate stiffness on tumor related cells in greater detail, we created hard–soft–hard (HSH) polydimethylsiloxane (PDMS) substrates with alternating regions of different stiffness (200 and 800 kPa). We then cultured WI-38 fibroblasts and A549 epithelial cells to probe their motile response to the substrates. We found that when the 2 cell types were exposed simultaneously to the same substrate, fibroblasts moved at an increased speed over epithelial cells. Furthermore, the HSH substrate allowed us to physically guide and separate the different cell types based on their relative motile speed. We believe that this method and results will be important in a diversity of areas including mechanical microenvironment, cell motility, and cancer biology.more » « less
-
Cell–substrate interaction plays an important role in intracellular behavior and function. Adherent cell mechanics is directly regulated by the substrate mechanics. However, previous studies on the effect of substrate mechanics only focused on the stiffness relation between the substrate and the cells, and how the substrate stiffness affects the time-scale and length-scale of the cell mechanics has not yet been studied. The absence of this information directly limits the in-depth understanding of the cellular mechanotransduction process. In this study, the effect of substrate mechanics on the nonlinear biomechanical behavior of living cells was investigated using indentation-based atomic force microscopy. The mechanical properties and their nonlinearities of the cells cultured on four substrates with distinct mechanical properties were thoroughly investigated. Furthermore, the actin filament (F-actin) cytoskeleton of the cells was fluorescently stained to investigate the adaptation of F-actin cytoskeleton structure to the substrate mechanics. It was found that living cells sense and adapt to substrate mechanics: the cellular Young’s modulus, shear modulus, apparent viscosity, and their nonlinearities (mechanical property vs. measurement depth relation) were adapted to the substrates’ nonlinear mechanics. Moreover, the positive correlation between the cellular poroelasticity and the indentation remained the same regardless of the substrate stiffness nonlinearity, but was indeed more pronounced for the cells seeded on the softer substrates. Comparison of the F-actin cytoskeleton morphology confirmed that the substrate affects the cell mechanics by regulating the intracellular structure.more » « less
-
Epithelia have distinct cellular architectures which are established in development, reestablished after wounding, and maintained during tissue homeostasis despite cell turnover and mechanical perturbations. In turn, cell shape also controls tissue function as a regulator of cell differentiation, proliferation, and motility. Here, we investigate cell shape changes in a model epithelial monolayer. After the onset of confluence, cells continue to proliferate and change shape over time, eventually leading to a final architecture characterized by arrested motion and more regular cell shapes. Such monolayer remodeling is robust, with qualitatively similar evolution in cell shape and dynamics observed across disparate perturbations. Here, we quantify differences in monolayer remodeling guided by the active vertex model to identify underlying order parameters controlling epithelial architecture. When monolayers are formed atop an extracellular matrix with varied stiffness, we find the cell density at which motion arrests varies significantly, but the cell shape remains constant, consistent with the onset of tissue rigidity. In contrast, pharmacological perturbations can significantly alter the cell shape at which tissue dynamics are arrested, consistent with varied amounts of active stress within the tissue. Across all experimental conditions, the final cell shape is well correlated to the cell proliferation rate, and cell cycle inhibition immediately arrests cell motility. Finally, we demonstrate cell cycle variation in junctional tension as a source of active stress within the monolayer. Thus, the architecture and mechanics of epithelial tissue can arise from an interplay between cell mechanics and stresses arising from cell cycle dynamics.